
Chapter Objectives

After studying this chapter, you should be able to:

➤ Write a polymorphic program using inheritance

➤ Write a polymorphic program using an interface

➤ Build an inheritance hierarchy

➤ Use the Strategy and Factory Method patterns to make your programs more flexible

➤ Override standard methods in the Object class

In science fiction movies, an alien sometimes morphs from one shape to another, as the
need arises. Someone shaped like a man may reshape himself into a hawk or a panther
or even a liquid. Later, after using the advantages the new shape gives him, he changes
back into his original shape.

Morph is a Greek word that means “shape.” The prefix poly means “many.” Thus,
polymorph means “many shapes.” The movie alien is truly polymorphic. However,
even though he has many outward shapes, the core of his being remains unchanged.

Java is also polymorphic. A class representing a core idea can morph in different ways
via its subclasses. After studying inheritance in Chapter 2, this may sound like nothing
new. However, in that chapter, we usually added new methods to a subclass. In this
chapter, we will focus much more on overriding methods from the superclass. The
power of this technique will become evident when we are free from knowing whether
we’re using the superclass or one of its subclasses.

We will also find similar benefits in using interfaces.

Chapter 12 Polymorphism

633

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 633

12.1 Introduction to Polymorphism

Java provides two ways to implement polymorphism. One uses inheritance and the
other uses interfaces. Both depend on having two or more classes that either extend the
same class or implement the same interface. We will return to the robot world to illus-
trate the core ideas and then move to other examples.

12.1.1 Dancing Robots

Let’s define two rather fanciful robots that dance, one to the left and one to the right,
as they move to the next intersection. The arrows in Figure 12-1 show the paths they
take as they move from their initial position (shown in black) to their final position
(shown in white). LeftDancer is labeled with an “L” and RightDancer is labeled
with an “R”.

The code implementing LeftDancer is shown in Listing 12-1. RightDancer is similar.

RL

L R

634
C

H
A
P
T
E
R

12
 |
 P

O
LY

M
O
R
P
H
IS

M

KEY IDEA

Polymorphism can be
implemented with
inheritance or
interfaces.

(figure 12-1)

Paths that dancing robots

take as they move to the

next intersection

ch12/dancers/

Listing 12-1: A robot that dances to the left as it moves forward

1 importƒbecker.robots.*;
2
3 /** LeftDancers dance to the left as they move forward.

4 *

5 *ƒ@author Byron Weber Becker */

6 publicƒclassƒLeftDancerƒextendsƒRobotSE
7 {
8 ƒƒpublicƒLeftDancer(Cityƒc,ƒintƒstr,ƒintƒave,ƒDirectionƒdir)
9 ƒƒ{ƒsuper(c,ƒstr,ƒave,ƒdir);

10 ƒƒƒƒthis.setLabel(“L”);
11 ƒƒ}
12
13 ƒƒ/** Dance to the left. */

14 ƒƒpublicƒvoidƒmove()
15 ƒƒ{ƒthis.turnLeft();
16 ƒƒƒƒsuper.move();
17 ƒƒƒƒthis.turnRight();

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 634

Method Resolution Review

How Java determines which method to execute is called method resolution. This con-
cept was first discussed in Section 2.6.2, but it is worth reviewing because it is impor-
tant to understand how these classes work.

When a method is invoked, say karel.move(), Java looks for the move method
beginning with the object’s class. If the object was originally created with the phrase
newƒLeftDancer(...), Java will look for the move method beginning with the
LeftDancer class. That class has a move method, so it’s executed.

On the other hand, suppose that the turnLeft method was invoked. Once again, the
search for the method begins with the object’s class, LeftDancer. That class, however,
doesn’t have a turnLeft method. The search continues in its superclass, RobotSE. It
doesn’t have a turnLeft method either and so the search continues in its superclass.
Robot has a turnLeft method; that’s the method that is executed. The search for the
method to execute starts with the object’s actual class and proceeds up the inheritance
hierarchy until it is found. If no such method exists, that fact is determined when the
program is compiled and an error message is issued.

When the statement uses super to call the method, the search starts at a different
place—the superclass of the class containing the method. Thus, the statement
super.move() at lines 16, 18, and 20 in Listing 12-1 begins to search for move in the
RobotSE class, executing the first move method found as it moves up the inheritance
hierarchy. In this case, it executes the move method in the Robot class, resulting in the
familiar movement from one intersection to another.

12.1.2 Polymorphism via Inheritance

So far we haven’t seen anything new. LeftDancer could have been an assignment in
Chapter 2. So where is the polymorphism? It’s in how these classes are used.

635
12

.1
IN

T
R
O
D
U
C
T
IO

N
T
O

P
O
LY

M
O
R
P
H
IS

M

Listing 12-1: A robot that dances to the left as it moves forward (continued)

18 ƒƒƒƒsuper.move();
19 ƒƒƒƒthis.turnRight();
20 ƒƒƒƒsuper.move();
21 ƒƒƒƒthis.turnLeft();
22 ƒƒ}
23 }

LOOKING AHEAD

What would happen
if line 16 was

this.move()? See
Written Exercise 12.1.

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 635

Let’s use these classes in a way that appears silly at first: Let’s assign a LeftDancer to
a RobotSE reference variable, as follows:

RobotSEƒkarelƒ=ƒnewƒLeftDancer(...);

Java allows this kind of assignment, as long as the reference on the right is a subclass of
the reference on the left. It would not work to assign a LeftDancer to a City variable
or even to a RightDancer variable because neither is a superclass of LeftDancer.

If we can do this, we can also put several LeftDancers and RightDancers into a sin-
gle array. Imagine a chorus line of dancing robots, as implemented in Listing 12-2. The
core feature is an array that contains all the robots, no matter what their type.

636
C

H
A
P
T
E
R

12
 |
 P

O
LY

M
O
R
P
H
IS

M

Listing 12-2: An array filled with different kinds of robots

1 importƒbecker.robots.*;
2
3 /** Run a chorus line of dancing robots.

4 *

5 *ƒ@author Byron Weber Becker */

6 publicƒclassƒDanceHallƒ
7 {
8 ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
9 ƒƒ{ƒCityƒstageƒ=ƒnewƒCity();

10 ƒƒƒƒRobotSE[]ƒchoruslineƒ=ƒnewƒRobotSE[5];
11
12 ƒƒƒƒ// Initialize the array.

13 ƒƒƒƒchorusline[0]ƒ=ƒnewƒLeftDancer(
14 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒstage,ƒ1,ƒ0,ƒDirection.EAST);
15 ƒƒƒƒchorusline[1]ƒ=ƒnewƒRightDancer(
16 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒstage,ƒ2,ƒ0,ƒDirection.EAST);
17 ƒƒƒƒchorusline[2]ƒ=ƒnewƒLeftDancer(
18 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒstage,ƒ3,ƒ0,ƒDirection.EAST);
19 ƒƒƒƒchorusline[3]ƒ=ƒnewƒRightDancer(
20 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒstage,ƒ4,ƒ0,ƒDirection.EAST);
21 ƒƒƒƒchorusline[4]ƒ=ƒnewƒRobotSE(
22 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒstage,ƒ5,ƒ0,ƒDirection.EAST);
23
24 ƒƒƒƒforƒ(intƒiƒ=ƒ0;ƒiƒ<ƒchorusline.length;ƒi++)
25 ƒƒƒƒ{ƒchorusline[i].move();
26 ƒƒƒƒ}
27 ƒƒ}
28 }

ch12/dancers/

Polymorphic Call

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 636

For now, remember that all of the objects in the array have a move method. We can tell
each of the robots to move with the loop in lines 24–26. But how do these robots
move? Do they move like instances of RobotSE because the array is declared that way,
or do they each move like the LeftDancer, RightDancer, or RobotSE that they
really are?

The answer is that each object executes the move method in its own class. That is, a
LeftDancermoves to the left because that’s how that kind of robot was defined to move.
RightDancers move to the right, as their move method says they should. The lone
RobotSE at the end of the line moves as any other instance of RobotSE would move.

This is polymorphism in action: the statement chorusline[i].move() tells a robot
to move, but this particular statement does not need to know or care what kind of
robot it is. For example, it doesn’t need to tell the LeftDancers to move to the left. It
just tells each robot to move and that robot moves in the way it is defined to move.
This is like a choreographer telling a dance troupe to “begin on the count of three: one,
two, three.” All the dancers begin dancing their parts without individual instruction
from the choreographer.

A class diagram for what we have just done is typical of polymorphic programs and is
shown in Figure 12-2. The characteristic feature is a superclass (RobotSE) that is
extended with at least two subclasses. Another class—DanceHall in this case—uses
instances of the subclasses as if they were the superclass.

Adding a New Method

Consider adding a pirouette method to both LeftDancer and RightDancer.
When a dancer pirouettes, she turns completely around. A LeftDancer turns to the
left, as follows, whereas a RightDancer turns to the right.

publicƒclassƒLeftDancerƒextendsƒRobotSE

RobotSE

methods omitted

LeftDancer

+LeftDancer(...)
+void move()

RightDancer

+RightDancer(...)
+void move()

DanceHall

-RobotSE[] chorusLine

methods omitted

*

637
12

.1
IN

T
R
O
D
U
C
T
IO

N
T
O

P
O
LY

M
O
R
P
H
IS

M

KEY IDEA

Polymorphism uses a
subclass as if it were
a superclass, relying

on the subclass to
override methods

appropriately.

KEY IDEA

Polymorphic
programs have key

identifying features.

(figure 12-2)

Class diagram for a

polymorphic robot

program

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 637

{ƒ// Constructor and move method omitted.

ƒƒ/** Turn completely around. */

ƒƒpublicƒvoidƒpirouette()
ƒƒ{ƒthis.turnLeft();
ƒƒƒƒthis.turnLeft();
ƒƒƒƒthis.turnLeft();
ƒƒƒƒthis.turnLeft();
ƒƒ}
}

With this change, can we tell the dancers in chorusline to pirouette?

1 RobotSE[]ƒchoruslineƒ=ƒnewƒRobotSE[5];
2 // Initialization of chorusline is omitted.

3 forƒ(intƒiƒ=ƒ0;ƒiƒ<ƒchorusline.length;ƒi++)
4 {ƒchorusline[i].pirouette();
5 }

We cannot. This code will not even compile because line 1 declares that each element of
chorusline will refer to a RobotSE object or one of its subclasses. Most kinds of
robots do not have a pirouette method and so the compiler assumes the worst—that
in line 4, chorusline[i] refers to an ordinary robot that lacks a pirouette method.

The rule is this: The type of the reference variable determines the names of the methods that
can be called; the type of the actual object determines which code is executed. In this exam-
ple, chorusline[i] is the reference variable and its type is RobotSE. Therefore, the only
methods you can call are methods that appear in the RobotSE class. On the other hand,
when you call one of those methods (like chorusline[i].move()), the type of the actual
object (for example, LeftDancer) is what determines how the robot moves.

To include the pirouette method in a dancer’s repertoire, we need to add a new class,
as shown in Figure 12-3. The Dancer class extends RobotSE and adds a pirouette
method. The DanceHall class is changed to use an array of Dancer objects rather than
RobotSE. This implies that the single RobotSE object shown at line 17 of Listing 12-2
can no longer be included in the array because it is not a subclass of Dancer.

638
C

H
A
P
T
E
R

12
 |
 P

O
LY

M
O
R
P
H
IS

M

ch12/dancers2/

KEY IDEA

The reference’s type
determines which
methods can be
called; the object’s
type determines
which code is
executed.

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 638

Abstract Classes

When we write the code for the Dancer class, should pirouette turn to the left like
a LeftDancer or turn to the right like a RightDancer? No matter which choice we
make, it will be wrong for at least one of the subclasses.

The best option is to make pirouette an abstract method. Such a method includes
only the access modifier, return type, and signature (method name and parameter list).
The method body is replaced with a semicolon. For example:

/** Turn this dancer around 360 degrees in its preferred direction. */
publicƒabstractƒvoidƒpirouette();

The purpose of an abstract method is to declare a name that can be used polymorphi-
cally, even though it does not declare how the method will be implemented.

Abstract methods must be overridden in a subclass to supply a method body. For
example, pirouette is overridden in LeftDancer with a method that turns to the
left; in RightDancer, it is overridden with a method that turns to the right.

A class that declares or inherits a method without a body is called an abstract class and
must be declared with the keyword abstract, as follows:

publicƒabstractƒclassƒDancerƒextendsƒRobotSE

An abstract class such as Dancer can be extended by another class, X, even though X
does not supply a body for pirouette. However, X must also be declared abstract.

An abstract class cannot be used to instantiate an object.

RobotSE

methods omitted

LeftDancer

+LeftDancer(...)
+void move()

RightDancer

+RightDancer(...)
+void move()

+void pirouette() +void pirouette()

* Dancer

+Dancer(...)
+void pirouette()

DanceHall

-Dancer[] chorusLine

methods omitted

639
12

.1
IN

T
R
O
D
U
C
T
IO

N
T
O

P
O
LY

M
O
R
P
H
IS

M

(figure 12-3)

Using an abstract class;

abstract classes and

methods are labeled

in italics

KEY IDEA

An abstract
method enables

polymorphism even
when implementation
details are not known.

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 639

When an abstract method or class is shown in a class diagram, its name will be in ital-
ics, as shown in Figure 12-3.

12.1.3 Examples of Polymorphism

Let’s take a brief break from robots to examine a number of other examples where
polymorphism may be appropriate. All of these cases have the same basic structure as
the DanceHall example shown in Figure 12-2. In Figure 12-4, we give the participat-
ing classes more general names so that in the examples that follow, we can identify
how the classes interact. We will use the names as follows:

➤ The client class uses the services of another class. In the previous example,
DanceHall is the client that uses the services (move) of another class—it just
happens to use them polymorphically.

➤ The abstract class is used to declare variables in the client. It also lists the methods
that can be used by the client. In Figure 12-2, RobotSE is the abstract class; in
Figure 12-3, it’s Dancer. (The class that defines the names used polymorphically
is called “abstract” even though it might not use the abstract keyword.)

➤ A concrete class implements the methods named in the abstract class. In the pre-
vious example, LeftDancer and RightDancer are both concrete classes.

Example: Bank Accounts

A Bank class (the client) has many Accounts (the abstract class). The Account class
has both an instance variable to maintain the account’s balance and methods to deposit
money, withdraw money, and transfer money to another account. It also has methods
to get the balance and to charge a service fee at the end of the month. See Figure 12-5.

Abstract

Concrete1 Concrete2

Client

-Abstract[] list
*

640
C

H
A
P
T
E
R

12
 |
 P

O
LY

M
O
R
P
H
IS

M

KEY IDEA

Names of abstract
methods and classes
are shown in italics in
class diagrams.

(figure 12-4)

Common pattern for

inheritance-based

polymorphism

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 640

However, each account is really an instance of MinBalanceAccount or PerUseAccount,
both concrete classes. A MinBalanceAccount is a kind of account that is free as long as
the customer maintains a minimum balance of $1,000. The withdraw method is overrid-
den to set an instance variable if the balance ever goes below the minimum. The service fee
method is also overridden to charge (or not charge) the service fee.

Similarly, PerUseAccount overrides the withdraw method to count the number of
withdrawals. It also overrides the serviceFee method to charge the appropriate fee
based on the number of withdrawals.

With this design, the Bank class can process every transaction in the same way. It doesn’t
need to know or care what kind of account the customer has because each account will
handle the transaction in a manner that is appropriate for that account.

Example: Drawing Program

A drawing program constructs a drawing out of different kinds of shapes: ovals, rec-
tangles, lines, polygons, characters, and so on. In this case, Drawing would be the
client class. It has an array of Shape objects. Shape is the abstract class. It’s most cru-
cial method is draw.

Classes like Oval, Rectangle, and Line are the concrete classes that extend Shape.
Each of them override the draw method to draw the appropriate shape: an Oval draws
an oval, a Rectangle draws a rectangle, and a Line draws a line.

MinBalanceAccount

-boolean wentBelowMin

+MinBalanceAccount(...)
+void withdraw(...)
+void serviceFee(...)

PerUseAccount

-int numWithdrawals

+PerUseAccount(...)
+void withdraw(...)

Bank

-Account[] accounts

methods omitted

* Account

-double balance

+Account(...)
+void deposit(...)
+void withdraw(...)
+void transfer(...)
+void getBalance()
+void serviceFee()

+void serviceFee(...)

641
12

.1
IN

T
R
O
D
U
C
T
IO

N
T
O

P
O
LY

M
O
R
P
H
IS

M

(figure 12-5)

Class diagram for a bank

Polymorphic Call

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 641

With this design, the Drawing class can draw the entire image with a simple for loop,
which tells each Shape object in its array to draw itself, as follows:

forƒ(intƒiƒ=ƒ0;ƒiƒ<ƒthis.numShapes;ƒi++)
{ƒthis.shapes[i].draw(...);
}

Example: Computer-Game Strategies

Computer versions of chess, Monopoly, and various card games have two or more
players. Sometimes the players are people and sometimes the computer controls the
extra players. Sometimes the computer has several skill levels.

Each Player object must have a strategy for generating its next move. There might be
several ways to do this: ask a human for the next move, find the first legal move, gen-
erate a random move, or invoke some sophisticated “artificial intelligence.”

The idea of polymorphism is useful here. Player is the client class. Rather than an array,
it has a single instance variable holding a MoveStrategy object. This class is the abstract
class shown in Figure 12-4. Its most important method is getNextMove. MoveStrategy
is extended by several concrete classes: AskUserStrategy, FirstLegalStrategy,
RandomStrategy, and AIStrategy. They each override getNextMove to get the next
move for the player in their own particular way (see Figure 12-6).

When the game program is set up this way, a Player object can ask for its next move
without knowing or caring which particular strategy is being used to generate the
move. The strategy can even be changed mid-game by simply assigning a new subclass
of MoveStrategy to the Player object’s instance variable.

MoveStrategy

+int getNextMove()

AskUserStrategy

FirstLegalStrategy

Player

-MoveStrategy mStrategy

RandomStrategy

AIStrategy

+int getNextMove() +int getNextMove()

+int getNextMove() +int getNextMove()

642
C

H
A
P
T
E
R

12
 |
 P

O
LY

M
O
R
P
H
IS

M

Polymorphic Call

Strategy

(figure 12-6)

Class diagram of a

Player class that uses a

polymorphic move

strategy

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 642

12.1.4 Polymorphism via Interfaces

In a polymorphic program, the client says what it wants done (move) but not how.
How the task is accomplished is determined by the details of the concrete classes.

When polymorphism is achieved via inheritance, the abstract class and the superclass
are the same. That combination constrains both what can be done and how it can be
implemented. The superclass already contains the methods that can be called, limiting
what can be done by the client. The fact that the concrete classes extend the abstract
class means that they are not free to extend another class, thus limiting how tasks are
accomplished.

Java interfaces provide another way to implement polymorphism that cleanly separates
what can be done from how it can be implemented. Recall from Section 7.6 that inter-
faces list method signatures and return types, but do not provide the method bodies.
For example, the following is an interface for classes that can move:

publicƒinterfaceƒIMove
{
ƒƒ/** Move this object. */
ƒƒpublicƒvoidƒmove();
}

We can use this interface with LeftDancer and RightDancer by including the
implements keyword and the interface name in the class declaration, as follows:

publicƒclassƒLeftDancerƒextendsƒRobotSEƒimplementsƒIMove
{ƒ// Constructor omitted.
ƒƒpublicƒvoidƒmove()
ƒƒ{ƒ// Same as the move method in Listing 12-1.
ƒƒ}
}

The implements clause causes the compiler to verify that LeftDancer, or one of its
superclasses, implements all of the methods listed in the IMove interface.

DanceHall, the client class, can use the interface to declare the array of dancers, as
follows:

IMove[]ƒchoruslineƒ=ƒnewƒIMove[5];
chorusLine[0]ƒ=ƒnewƒLeftDancer(stage,ƒ1,ƒ0,ƒDirection.EAST);

However, an instance of RobotSE cannot be inserted into the array because it does not
implement IMove.

It may seem that we haven’t gained anything by introducing IMove. But imagine a
parade of robots where a LeftDancer and a RightDancer are carrying a banner. We
want the banner to float above everything in the city and display the text “Robot

643
12

.1
IN

T
R
O
D
U
C
T
IO

N
T
O

P
O
LY

M
O
R
P
H
IS

M

KEY IDEA

Java interfaces
separate what an

object can do from
how it can be

implemented.

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 643

Parade”. The banner should move as the robots move. Figure 12-7 shows two screen
captures of such a program.

A class implementing such a banner is shown in Listing 12-3. It displays a small win-
dow that floats above all other windows. It has a move method to move it a given dis-
tance. It extends JDialog but also implements the IMove interface and can therefore
be put in the same array as the robots that carry it, as follows:

ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
ƒƒ{ƒCityƒcƒ=ƒnewƒCity();

ƒƒƒƒIMove[]ƒmoversƒ=ƒnewƒIMove[3];

ƒƒƒƒmovers[0]ƒ=ƒnewƒLeftDancer(c,ƒ1,ƒ1,ƒDirection.EAST);
ƒƒƒƒmovers[1]ƒ=ƒnewƒRightDancer(c,ƒ3,ƒ1,ƒDirection.EAST);
ƒƒƒƒmovers[2]ƒ=ƒnewƒBanner(80,ƒ165,ƒ40,ƒ"Robot Parade");

ƒƒƒƒforƒ(intƒnumMovesƒ=ƒ0;ƒnumMovesƒ<ƒ2;ƒnumMoves++)
ƒƒƒƒ{ƒforƒ(intƒiƒ=ƒ0;ƒiƒ<ƒmovers.length;ƒi++)
ƒƒƒƒƒƒ{ƒmovers[i].move();
ƒƒƒƒƒƒ}
ƒƒƒƒ}
ƒƒ}

For both the banner and the robots, the client can say what to do (move), but the
details of how they move are very different. This is the essence of polymorphism, but
using an interface instead of extending a class.

644
C

H
A
P
T
E
R

12
 |
 P

O
LY

M
O
R
P
H
IS

M

(figure 12-7)

Before and after moving

robots and their banner

Polymorphic Call

Listing 12-3: A banner that floats above a city and everything in it

1 importƒjavax.swing.*;
2
3 /** A "banner" that passes over a robot city.

4 *

ch12/iMove/

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 644

12.1.5 The Substitution Principle

A key to understanding polymorphism is the substitution principle, introduced by
Barbara Liskov. It says that an object of one type, A, can substitute for an object of
another type, B, if A can be used any place that B can be used.

For example, consider an automobile rental agency that has vans, sports cars, and
sedans. If a customer calls a week ahead to reserve an automobile, the agency can sub-
stitute a van if that’s what is most available. A van is a kind of automobile and can do
everything an automobile can do. On the other hand, if the customer called to reserve

645
12

.1
IN

T
R
O
D
U
C
T
IO

N
T
O

P
O
LY

M
O
R
P
H
IS

M

Listing 12-3: A banner that floats above a city and everything in it (continued)

5 *ƒ@author Byron Weber Becker */

6 publicƒclassƒBannerƒextendsƒJDialogƒimplementsƒIMove
7 {ƒprivateƒintƒx;
8 ƒƒprivateƒintƒy;
9 ƒƒprivateƒintƒdeltaX;

10
11 ƒƒ/** Display a message in a floating window.

12 ƒƒ*ƒ@param initX The initial x position of the banner.

13 ƒƒ*ƒ@param initY The initial y position of the banner.

14 ƒƒ*ƒ@param moveX The distance to move.

15 ƒƒ*ƒ@param msg The msg to display. */

16 ƒƒpublicƒBanner(intƒinitX,ƒintƒinitY,ƒintƒmoveX,ƒStringƒmsg)
17 ƒƒ{ƒsuper();
18 ƒƒƒƒthis.deltaXƒ=ƒmoveX;
19 ƒƒƒƒthis.xƒ=ƒinitX;
20 ƒƒƒƒthis.yƒ=ƒinitY;
21 ƒƒƒƒthis.setSize(20,ƒ60);
22 ƒƒƒƒthis.setLocation(this.x,ƒthis.y);
23 ƒƒƒƒthis.setAlwaysOnTop(true);
24 ƒƒƒƒthis.setContentPane(newƒJLabel(msg));
25 ƒƒƒƒthis.setVisible(true);
26 ƒƒ}
27
28 ƒƒ/** Move the banner. */

29 ƒƒpublicƒvoidƒmove()
30 ƒƒ{ƒthis.xƒ+=ƒthis.deltaX;
31 ƒƒƒƒthis.setLocation(this.x,ƒthis.y);ƒ
32 ƒƒ}
33 }

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 645

a van, the agency cannot substitute a sports car. Maybe the customer specifically needs
the extra passenger space provided by the van.

In Java, a subclass can always be used anywhere the superclass can be used. A
LeftDancer (the subclass) can always be substituted for a Dancer (the superclass)—
just like a van (the subclass) can be substituted for an automobile (the superclass).
Why? Inheritance guarantees that a LeftDancer has all of the methods that a
RobotSE has.

Similarly, a class such as Banner can be substituted for its interface because the com-
piler guarantees that every method named in the interface will be implemented in the
concrete class.

A polymorphic program exploits the fact that even though a concrete class may be sub-
stituted for the abstract class, they do not necessarily act the same way. The key feature
of a polymorphic program is setting up the classes so that some operations can be per-
formed without knowing the actual types of the objects being used.

12.1.6 Choosing between Interfaces and Inheritance

We’ve seen that a polymorphic program can be written using either interfaces or inher-
itance. On what basis do we choose one approach over the other?

The simple rule is to use an interface unless there is some commonality between all the
concrete classes that can be implemented in a superclass.

In the first example, LeftDancer and RightDancer have many common details that
are implemented in RobotSE and its superclasses. These include the ability to move the
usual way, turn left or right, and display itself in the city. In the second example, there
are no such commonalities. The robots and the banner are implemented completely
differently with different superclasses—and thus an interface was appropriate.

In Chapter 11 we talked about loose coupling being a good design decision. That is,
classes should depend on each other as little as possible. Modern object-oriented
design makes extensive use of interfaces to cleanly separate what classes do from how
they do them. That is, a client that uses interfaces is less dependent than one that does-
n’t. If another concrete class becomes available that implements the interface, it can be
substituted with no change to the client. That’s loose coupling!

646
C

H
A
P
T
E
R

12
 |
 P

O
LY

M
O
R
P
H
IS

M

KEY IDEA

A subclass that does
things differently can
be substituted for the
superclass.

KEY IDEA

Classes can be
substituted for the
interfaces they
implement.

KEY IDEA

Use interfaces for
polymorphism unless
there is a reason to
use inheritance.

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 646

12.2 Case Study: Invoices

In Sections 8.3 and 11.2.2 we studied a simple design methodology to help us start writing
an object-oriented program. We now extend that methodology for the last time to incor-
porate polymorphism. The changes from Section 8.3 are shown in italics in Figure 12-8.

In this section, we’ll see how this methodology works by applying it to an invoicing
application. The problem statement (or specification) and a sample invoice are shown
in Figure 12-9.

1. Read the description of what the program is supposed to do, highlighting the nouns
and noun phrases. These are the objects your program must declare.
a. If there are any objects that cannot be directly represented using existing types,

define classes to represent such objects.
b. If two or more classes have common attributes and pass the ‘is-a’ test, consolidate

those attributes into a superclass, and extend the superclass to define the classes.
2. Highlight the verbs and verb phrases in the description. These are the services.

If a service is not predefined:
a. Define a method to perform the service.
b. Place it in the class responsible for providing the service.
c. Where necessary, override methods in subclasses.
d. If a class is responsible for a service but cannot implement it, declare an

abstract method.
3. Apply the services from Step 2 to the objects from Step 1 in a way that solves

the problem.

647
12

.2
C

A
S
E

S
T
U
D
Y: IN

V
O
IC

E
S

(figure 12-8)

Object-oriented design

methodology

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 647

12.2.1 Step 1: Identifying Objects and Classes

Step 1 in the object-oriented design methodology (Figure 12-8) tells us to highlight the
nouns and noun phrases. Recall that a noun is a word that can refer to a person, place,
or thing and is often the subject or object of a verb. The nouns and noun phrases in the
problem statement are listed in Figure 12-10 in the left column.

Print an invoice to request payment for items provided to a customer by the company.
The invoice shows the customer’s name and address, and the total invoice amount.

In addition to the above, add one line item for each group of identical items sold.
Each line item shows the quantity of items sold, a description, the unit cost, and the
total amount charged for items in the group.

The company provides three kinds of items:

Goods (like computers or software): calculate the amount charged as the
quantity times the unit cost.

Services (such as providing an Internet connection or a service contract
on a computer): calculate the amount charged as the quantity
(number of connections or contracts) times the unit cost per month
times the number of months.

Consulting: calculate the amount charged as the hourly rate times the
time spent.

A sample invoice is shown below. Notice that some of the variation between different
kinds of items is shown in the description.

Computers To You
1 Byte Way
Waterloo, Ontario N2G 3H4

Byron Weber Becker
122 Nomad Street
Waterloo, Ontario N2L 3G1

Unit
Qty Description Cost Amount
3 Desktop computers $1,750.00 $5,250.00
1 Premium office suite $750.00 $750.00
3 Computer service contracts (12 months) $5.95 $214.20
1 Consulting re: printer installation (0.75 hrs) $75.00 $56.25
1 Consulting re: LAN wiring (5.00 hrs) $75.00 $375.00

Total: $ 6,645.45

648
C

H
A
P
T
E
R

12
 |
 P

O
LY

M
O
R
P
H
IS

M

(figure 12-9)

Problem statement

for a simple invoicing

application

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 648

Some of the nouns are not relevant and can be eliminated. For example, “payment for
items provided” is in a clause explaining the purpose of the system and represents some-
thing the customer does in response to receiving an invoice. Similarly, “group of identical
items sold” seems to define the term “line item.” These two noun phrases are crossed out
in the list.

Some nouns in the list duplicate each other. For example, two entries in the table talk about
“unit cost.” Furthermore, the sample invoice shows the hourly rate for consulting in the
unit cost column. They can probably all be combined into the single term “unit cost.”

Some of these nouns can be represented with existing types such as integers and strings.
These are noted in the middle column. Other nouns will require that we define a class, as
suggested by Step 1a of Figure 12-8. Suggested class names are shown in the right column.

Class Relationships

We’ve identified a number of potential classes in Figure 12-10. How are they related to
each other? If we use the “is-a” and “has-a” tests, the sentence “An invoice has a
customer” makes much more sense than “An invoice is a customer.” Similarly, “A cus-
tomer has an address” and “An invoice has a line item” make more sense than saying
“A customer is an address” or “An invoice is a line item.”

Nouns and Noun Phrases Types Class Names
invoice Invoice

payment for items provided

customer Customer

company Company

customer’s name String

customer’s address Address

total invoice amount double

line item LineItem

group of identical items sold

quantity of items sold int

description of items sold String

unit cost of items sold double

total amount charged for items in the group double

items Item

goods Good

amount charged double

services Service

unit cost per month double

number of months int

consulting Consulting

hourly rate double

time spent double

649
12

.2
C

A
S
E

S
T
U
D
Y: IN

V
O
IC

E
S

(figure 12-10)

Nouns and noun

phrases from the

problem statement

LOOKING BACK

“Is-a” and “Has-a”
are two ways of

relating classes. They
were discussed in

Section 8.1.3.

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 649

Examining the specification’s three paragraphs related to the three kinds of items indi-
cates that Goods have amounts charged, quantities, and unit costs. Services, on the
other hand, have amounts charged, quantities, unit costs per month, and the number of
months. Finally, Consulting objects have hourly rates and time spent. We see that
these classes definitely have some common attributes; therefore, Step 1b of Figure 12-8
(which suggests forming a superclass) may apply. The phrase “three kinds of items”
suggests that we might name the superclass Item and already hints that inheritance
may be appropriate.

The remaining question is whether these classes pass the “is-a” test. Recall that the “is-
a” test consists of forming a sentence using “is-a” or “is a kind of” with the two classes
in question. For example, “A Service is a kind of Item” or “A Consulting is a kind
of Item.”

These sentences don’t sound quite right. The problem might be that the inheritance
relationship isn’t correct. However, the specification explicitly says that there are
“three kinds of items: goods, services, and consulting.”

Perhaps the problem with these sentences is the names we’ve chosen. “Service” and “con-
sulting” refer to what the company provided to the customer. In programming the invoic-
ing system, we are really concerned with what goes on the invoice to represent the goods
and the consulting. That is, we’re most concerned with the line items. The sample invoice
shown in Figure 12-9 has five line items. The first line item is for three computers, the sec-
ond line item is for an office suite, the third is for service contracts, and the last two line
items are for consulting.

The three “kinds of items” the specification refers to are three kinds of line items. If we
name them GoodsLineItem, ServicesLineItem, and ConsultingLineItem, then
an is-a statement like “A GoodsLineItem is a kind of LineItem” makes sense. We
can conclude that inheritance is appropriate.

These relationships are shown in Figure 12-11. Observe the striking resemblance to the
common pattern for polymorphism shown in Figure 12-4.

650
C

H
A
P
T
E
R

12
 |
 P

O
LY

M
O
R
P
H
IS

M

KEY IDEA

Choose appropriate
names for classes.

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 650

Assigning Attributes

Some of the nouns and noun phrases will correspond to attributes in these classes. An
initial assignment is also shown in Figure 12-11. The Customer and Address classes
are not relevant to the main topics of this chapter and are omitted from the rest of the
discussion.

We know from the specification’s second paragraph that each line item shows a quan-
tity, description, unit cost, and amount. These seem like good attributes to add to the
LineItem class. Before we do that, however, we should check two things. First, is it
better to compute the value or store it in an attribute? The amount seems like a value
that is better computed by a method than stored in an attribute, especially given the
extensive explanations about how to calculate it from other values.

Second, before placing these attributes in the LineItem class we should ask whether
they apply to all of LineItem’s subclasses. A quick glance at the sample invoice shows
that each kind of line item shows all the values. Therefore we conclude that quantity,
description, and unit cost can go into LineItem.

The time spent consulting and the number of months a service is provided are obvi-
ously unique to ConsultingLineItem and ServicesLineItem, respectively.

The remaining attributes all seem to be variations of attributes we have already discussed.

LineItem

-int quantity
-String description
-double unitCost

ConsultingLineItem

-double hours

ServicesLineItem

-int numMonths

GoodsLineItem

Invoice

-LineItem[] items
-int numItems

1..*

Customer Address

651
12

.2
C

A
S
E

S
T
U
D
Y: IN

V
O
IC

E
S

(figure 12-11)

Initial class diagram for

the invoicing system

KEY IDEA

If an attribute is in a
superclass, it should

be applicable to all
the subclasses.

KEY IDEA

Some attributes do
not belong in the

superclass.

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 651

12.2.2 Step 2: Identifying Services

Step 2 of the object-oriented design methodology in Figure 12-8 is to identify potential
services by considering the verbs in the specification. The verbs, with slight transfor-
mations to show context, are shown in Figure 12-12.

As with nouns, some of the verb phrases may not belong. For example, “request pay-
ment” describes the purpose of the invoice and “provide items to a customer” is some-
thing the company does. Neither are things that this computer system should do. Both
are crossed off the list.

Assigning Methods to Classes

Printing an invoice is an activity of the Invoice class and is assigned there, as is
adding a line item. Showing the quantity, description, unit cost, and amount are asso-
ciated with all line item objects, so we will assign these to the LineItem class. They
are most likely to be used by the print method to get the associated values, so we’ll
name them getX rather than showX (where X is replaced with a name).

Each line item must calculate the amount to charge for the goods, services, or consult-
ing it represents. On the other hand, we also know that these values are all calculated
differently, strongly suggesting that calcAmount should be an abstract method in
LineItem. This allows it to be called polymorphically, but defers the decision of how
to calculate the amount to the appropriate subclasses.

The sample invoice shows that the description is displayed differently for each kind of
line item. A ConsultingLineItem displays the number of hours and a
ServicesLineItem displays the number of months. This seems similar to
calcAmount, suggesting another abstract method. However, we also need an accessor
method in LineItem for description, suggesting an accessor method that is over-
ridden as needed in the subclasses.

Figure 12-13 shows the class diagram with these assignments made.

print an invoice
request payment for items
provide items to a customer
show customer name, address, total amount billed
add a line item
show line item info (quantity, description, unit cost, total amount)
calculate the amount charged for goods
calculate the amount charged for services
calculate the amount charged for consulting

652
C

H
A
P
T
E
R

12
 |
 P

O
LY

M
O
R
P
H
IS

M

(figure 12-12)

Verbs from the problem’s

specification

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 652

Implementing Methods

Relevant portions of the LineItem class are shown in Listing 12-4. There is nothing
unusual about it except for the abstract method to calculate the line item’s amount
(line 23) and the resulting abstract keyword applied to the class (line 4).

LineItem

-int quantity
-String description
-double unitCost

+LineItem(int aQuantity,

+int getQuantity()
+String getDescription()
+double getUnitCost()
+double calcAmount()

ConsultingLineItem

-double hours

+ConsultingLineItem(...)
+double calcAmount()
+String getDescription()

GoodsLineItem

+GoodsLineItem(...)
+double calcAmount()

Invoice

-LineItem[] items
-int numItems

+Invoice(...)
+void print(...)
+void add(...)

1..*

String aDescr,
double aUnitCost)

ServicesLineItem

-int numMonths

+ServicesLineItem(...)
+double calcAmount()
+String getDescription()

653
12

.2
C

A
S
E

S
T
U
D
Y: IN

V
O
IC

E
S

(figure 12-13)

Methods assigned to

classes

ch12/invoice/

Listing 12-4: The LineItem class with an abstract method

1 /** A line item is one kind of thing provided by the company for the customer.

2 *

3 *ƒ@author Byron Weber Becker */

4 publicƒabstractƒclassƒLineItemƒextendsƒObject
5 {
6 ƒƒprivateƒintƒquantity;
7 ƒƒprivateƒStringƒdescription;
8 ƒƒprivateƒdoubleƒunitCost;
9

10 ƒƒ/** Construct a new line item.

11 ƒƒ*ƒ@param aQuantity ƒƒƒThe number of things provided to the customer.

12 ƒƒ*ƒ@param aDescr ƒƒƒA description of the things provided.

13 ƒƒ*ƒ@param aunitCost ƒƒƒThe cost of each of the things. */

14 ƒƒpublicƒLineItem(intƒaQuantity,ƒStringƒaDescr,ƒ
15 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒdoubleƒaUnitCost)
16 ƒƒ{ƒsuper();
17 ƒƒƒƒthis.quantityƒ=ƒaQuantity;
18 ƒƒƒƒthis.descriptionƒ=ƒaDescr;

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 653

The interesting methods in ServicesLineItem are implemented as shown in
Listing 12-5. Invoicing for services requires knowing the number of months the ser-
vice is provided, resulting in the instance variable numMonths in line 6. A value to
initialize numMonths is passed as an argument to the constructor, also with values to
initialize the superclass. It is common for a subclass’ constructor to have more para-
meters than the superclass. It uses some of them to initialize its own instance vari-
ables, and passes the rest of them to the superclass.

This class provides a body for calcAmount (lines 20–23). Because the quantity and
unit cost of the service contracts are stored in LineItem, accessor methods are used to
get their values.

The getDescription method is overridden to add the number of months to the
description.

654
C

H
A
P
T
E
R

12
 |
 P

O
LY

M
O
R
P
H
IS

M

Listing 12-4: The LineItem class with an abstract method (continued)

19 ƒƒƒƒthis.unitCostƒ=ƒaUnitCost;
20 ƒƒ}
21
22 ƒƒ/** Calculate the total amount owing due to this line item. */

23 ƒƒpublicƒabstractƒdoubleƒcalcAmount();
24
25 ƒƒ// Accessor methods omitted.

26 }

Listing 12-5: Implementing the interesting methods in the ServicesLineItem class

1 /** Invoice the customer for 1 or more identical service contracts.

2 *

3 * @author Byron Weber Becker */

4 publicƒclassƒServicesLineItemƒextendsƒLineItemƒ
5 {
6 ƒƒprivateƒintƒnumMonths;
7
8 ƒƒ/** Construct a new line item for services provided.

9 ƒƒ*ƒ@param aQuantity The number of service contracts provided to the customer.

10 ƒƒ*ƒ@param aDescr A description of the services provided.

11 ƒƒ*ƒ@param aMthlyCost The monthly cost of each service contract.

12 ƒƒ*ƒ@param aNumMonths The number of months the service contract lasts. */

13 ƒƒpublicƒServicesLineItem(intƒaQuantity,ƒStringƒaDescr,ƒ
14 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒdoubleƒaMthlyCost,ƒintƒaNumMonths)
15 ƒƒ{ƒsuper(aQuantity,ƒaDescr,ƒaMthlyCost);

ch12/invoice/

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 654

12.2.3 Step 3: Solving the Problem

The last step in the object-oriented design methodology shown in Figure 12-8 is to
“apply the services from Step 2 to the objects from Step 1 in a way that solves the prob-
lem.” We won’t solve the entire problem here. We will focus on the print method in
Invoice to show how it uses polymorphism and the inheritance hierarchy we’ve built.
We’ll also briefly discuss how to read invoices from a file.

Printing Invoices

The following pseudocode for print follows directly from the sample invoice shown
in Figure 12-9.

print the company’s address
print the customer’s address
print column headers
totalAmountBilled = 0
for each line item
{ print the quantity, description, unit cost and amount

totalAmountBilled = totalAmountBilled + amount
}
print totalAmountBilled

This code is polymorphic because it does not need to know or care what kind of line
item object is in the array of line items. Thanks to polymorphism, the print method

655
A12

.2
C

A
S
E

S
T
U
D
Y: IN

V
O
IC

E
S

Listing 12-5: Implementing the interesting methods in the ServicesLineItem class (continued)

16 ƒƒƒƒthis.numMonthsƒ=ƒaNumMonths;
17 ƒƒ}
18
19 ƒƒ/** Calculate the total amount owing due to this line item. */

20 ƒƒpublicƒdoubleƒcalcAmount()
21 ƒƒ{ƒreturnƒthis.getQuantity()ƒ*ƒthis.getUnitCost()ƒ
22 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ*ƒthis.numMonths;
23 ƒƒ}
24
25 ƒƒ/** Get the description of the services represented by this line item. */

26 ƒƒpublicƒStringƒgetDescription()
27 ƒƒ{ƒreturnƒsuper.getDescription()ƒ+ƒ
28 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ" ("ƒ+ƒthis.numMonthsƒ+ƒ" months)";
29 ƒƒ}
30 }

Polymorphic Call

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 655

can simply call the calcAmount and getDescription methods and they will return
a value appropriate to their actual type.

However, we should recall the lessons learned in Chapter 11. The code inside the loop
separates the processing (printing a line item) from the data (information stored in the
line item). A better design would keep the data and processing together by placing a
print method in the LineItem class. The print method in the Invoice class calls
LineItem’s print polymorphically, as shown in Listing 12-6.

656
C

H
A
P
T
E
R

12
 |
 P

O
LY

M
O
R
P
H
IS

M

ch12/invoice/

Listing 12-6: The simplified print method in the Invoice class

1 publicƒclassƒInvoiceƒextendsƒObject
2 {
3 ƒƒprivateƒLineItem[]ƒitemsƒ=ƒnewƒLineItem[1];
4 ƒƒprivateƒintƒnumItemsƒ=ƒ0;
5 ƒƒ// Constructors, methods, and some instance variables omitted.

6
7 ƒƒpublicƒvoidƒprint(PrintWriterƒout)
8 ƒƒ{ƒthis.printCompanyAddress(out);
9 ƒƒƒƒthis.printCustomerAddress(out);

10 ƒƒƒƒthis.printColumnHeaders(out);
11
12 ƒƒƒƒdoubleƒtotalAmountBilledƒ=ƒ0.0;
13 ƒƒƒƒforƒ(intƒiƒ=ƒ0;ƒiƒ<ƒthis.numItems;ƒi++)
14 ƒƒƒƒ{ƒLineItemƒitemƒ=ƒthis.items[i];
15 ƒƒƒƒƒƒitem.print(out);ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ// polymorphism

16 ƒƒƒƒƒƒdoubleƒamtƒ=ƒitem.calcAmount();ƒƒƒ// polymorphism

17 ƒƒƒƒƒƒtotalAmountBilledƒ=ƒtotalAmountBilledƒ+ƒamt;
18 ƒƒƒƒ}
19
20 ƒƒƒƒthis.printTotal(out,ƒtotalAmountBilled);
21 ƒƒ}
22 }

The print method itself is shown in Listing 12-7.

Listing 12-7: A method to print one LineItem

1 publicƒabstractƒclassƒLineItemƒextendsƒObject
2 {
3 ƒƒprivateƒstaticƒfinalƒNumberFormatƒmoneyƒ=ƒ
4 ƒƒƒƒƒƒƒƒƒNumberFormat.getCurrencyInstance();
5 ƒƒ// Some instance variables, constructors, and methods omitted.

6

ch12/invoice/

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 656

Polymorphism is at work in this example in two ways. The first is calling print poly-
morphically from the Invoice class. The second is that each use of the keyword this
inside LineItem’s print method refers to one of the three concrete classes. Therefore,
this.getDescription() will search for the method getDescription beginning
with the concrete class, one of GoodsLineItem, ServicesLineItem, or
ConsultingLineItem. If getDescription was overridden, the more specialized
version will be called. Furthermore, when calcAmount is called in line 13, the version
in this line item’s concrete class will be called. This is polymorphism because the client,
LineItem, doesn’t need to know or care what kind of line item it is. Because it is call-
ing methods that may be overridden, this method has a lot in common with the
Template Method pattern studied in Section 3.5.3.

Reading an Invoice from a File

Reading an invoice from a file is trickier than the examples covered in Chapter 9
because of polymorphism. The file must contain all the information needed to recon-
struct the different kinds of line items. This has two implications. First, the file must
indicate which of the various subclasses of LineItem to construct; second, the file
must store more data for some line items than for others.

One possible file format is shown in the example in Figure 12-14. It contains customer
information followed by the line items. Each line item uses two or more lines. The first
line in each group is a string indicating which class to construct. The remaining lines in
the group contain the data used to initialize the objects.

657
12

.2
C

A
S
E

S
T
U
D
Y: IN

V
O
IC

E
S

Listing 12-7: A method to print one LineItem (continued)

7 ƒƒ/** Print this line item to the specified file. */

8 ƒƒpublicƒvoidƒprint(PrintWriterƒout)
9 ƒƒ{ƒout.printf("%3d %-50s%10s%10s%n",

10 ƒƒƒƒƒƒƒƒƒƒthis.getQuantity(),ƒ
11 ƒƒƒƒƒƒƒƒƒƒthis.getDescription(),ƒ
12 ƒƒƒƒƒƒƒƒƒƒthis.money.format(this.unitCost),
13 ƒƒƒƒƒƒƒƒƒƒthis.money.format(this.calcAmount()));
14 ƒƒ}
15 }

KEY IDEA

Polymorphism can
also occur when an

overridden method is
called from a

superclass.

KEY IDEA

Include data in the
file that says what
kind of subclass to

construct.

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 657

An Invoice constructor that reads this file is shown in Listing 12-8. It repeatedly
reads a line identifying the type of line item required (line 13). The cascading-if state-
ment in lines 14–22 calls the appropriate constructor based on the name that was read.
By the time control returns to line 12, all of the data for that line item has been read,
and the program is ready to read the name of the next subclass.

Byron Weber Becker
122 Nomad Street
Waterloo, ON N2L 3G1
GoodsLineItem
3 1750.00 Desktop computers
ConsultingLineItem
1 75.00 Consulting re: LAN wiring
5.00
ServicesLineItem
3 5.95 Computer service contracts
12
ConsultingLineItem
1 75.00 Consulting re: printer installation
0.75
GoodsLineItem
1 750.00 Premium office suite

Customer information

One line item

Another line item

Type of line item

Information common to all line items
(quantity, unit price, description)

Information specific to
ConsultingLineItem
(number of hours)

658
C

H
A
P
T
E
R

12
 |
 P

O
LY

M
O
R
P
H
IS

M

(figure 12-14)

One possible file format

for storing line items

ch12/invoice/

Listing 12-8: A constructor for the Invoice class

1 publicƒclassƒInvoiceƒextendsƒObject
2 {
3 ƒƒprivateƒLineItem[]ƒitemsƒ=ƒnewƒLineItem[1];
4 ƒƒprivateƒintƒnumItemsƒ=ƒ0;
5 ƒƒ// Some constructors, methods, and instance variables omitted.

6
7 ƒƒ/** Read an invoice from a file. */

8 ƒƒpublicƒInvoice(Scannerƒin)
9 ƒƒ{ƒthis.customerƒ=ƒnewƒCustomer(in);

10
11 ƒƒƒƒ// Read and construct the line items, putting them in the array.

12 ƒƒƒƒwhileƒ(in.hasNextLine())
13 ƒƒƒƒ{ƒStringƒsubclassƒ=ƒin.nextLine();
14 ƒƒƒƒƒƒifƒ(subclass.equals("GoodsLineItem"))
15 ƒƒƒƒƒƒ{ƒthis.addLineItem(newƒGoodsLineItem(in));
16 ƒƒƒƒƒƒ}ƒelseƒifƒ(subclass.equals("ServicesLineItem"))
17 ƒƒƒƒƒƒ{ƒthis.addLineItem(newƒServicesLineItem(in));
18 ƒƒƒƒƒƒ}ƒelseƒifƒ(subclass.equals("ConsultingLineItem"))
19 ƒƒƒƒƒƒ{ƒthis.addLineItem(newƒConsultingLineItem(in));
20 ƒƒƒƒƒƒ}ƒelse
21 ƒƒƒƒƒƒ{ƒthrowƒnewƒError("Unknown subclass: "ƒ+ƒsubclassƒ+ƒ".");
22 ƒƒƒƒƒƒ}
23 ƒƒƒƒ}
24 ƒƒ}

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 658

The remaining task is to write the constructors needed to read a line item. A total of
four are required: one for LineItem and one for each of the subclasses. The
LineItem constructor will be called using super in each of the subclass constructors.
After it has read the information it requires, reading will resume in the subclass con-
structor. It reads any remaining information to initialize its own instance variables.
Listing 12-9 shows the relevant code for LineItem, and Listing 12-10 shows the rele-
vant code for ConsultingLineItem.

659
12

.2
C

A
S
E

S
T
U
D
Y: IN

V
O
IC

E
S

Listing 12-8: A constructor for the Invoice class (continued)

25
26 ƒƒ/** Add one line item to items array. Enlarge the array, if necessary. */

27 ƒƒpublicƒvoidƒaddLineItem(LineItemƒitem)
28 ƒƒ{ƒ// Remainder of method omitted.

29 ƒƒ}

30 }

KEY IDEA

Each class reads the
data it needs to
initialize itself.

Listing 12-9: A constructor to read information for one LineItem object from a file

1 publicƒabstractƒclassƒLineItemƒextendsƒObject
2 {ƒprivateƒintƒquantity;
3 ƒƒprivateƒdoubleƒunitCost;
4 ƒƒprivateƒStringƒdescription;
5
6 ƒƒpublicƒLineItem(Scannerƒin)
7 ƒƒ{ƒsuper();ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ// Read only the data stored in this class.

8 ƒƒƒƒthis.quantityƒ=ƒin.nextInt();
9 ƒƒƒƒthis.unitCostƒ=ƒin.nextDouble();

10 ƒƒƒƒthis.descriptionƒ=ƒin.nextLine();
11 ƒƒ}
12
13 ƒƒ// Remainder of class omitted.

14 }

ch12/invoice/

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 659

Using a Factory Method

The approach shown in the preceding listings works. Its disadvantage is the complex-
ity in the Invoice constructor that has little to do with invoices and much to do with
line items.

A better approach is to move the complexity of determining which subclass to con-
struct and the actual construction into a static method named read in the LineItem
class. That method can determine which kind of line item is next in the file, construct
one, and return it. read must be a method and not a constructor because a method can
return a subclass of LineItem—something a constructor can’t do.

The read method, shown in Listing 12-11, is very similar to lines 13–22 in Listing 12-8.
It must be static so that it can be called without an instance of an object.

660
C

H
A
P
T
E
R

12
 |
 P

O
LY

M
O
R
P
H
IS

M

Listing 12-10: A constructor showing how to use a constructor in the superclass

1 publicƒclassƒConsultingLineItemƒextendsƒLineItem
2 {ƒprivateƒdoubleƒhours;
3
4 ƒƒpublicƒConsultingLineItem(Scannerƒin)
5 ƒƒ{ƒsuper(in);ƒƒƒƒƒ// Superclass reads what it needs from the file, leaving the

6 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ// file cursor just before the number of consulting hours.

7 ƒƒƒƒthis.hoursƒ=ƒin.nextDouble();
8 ƒƒƒƒin.nextLine();
9 ƒƒ}

10
11 ƒƒ// Remainder of class omitted.

12 }

ch12/invoice/

KEY IDEA

A static method can
return the required
subclass of
LineItem.

Listing 12-11: A factory method

1 publicƒabstractƒclassƒLineItemƒextendsƒObject
2 { // Instance variables, constructors, and most methods omitted.

3
4 ƒƒpublicƒstaticƒLineItemƒread(Scannerƒin)
5 ƒƒ{ƒStringƒsubclassƒ=ƒin.nextLine();
6 ƒƒƒƒifƒ(subclass.equals("GoodsLineItem"))
7 ƒƒƒƒ{ƒreturnƒnewƒGoodsLineItem(in);
8 ƒƒƒƒ}ƒelseƒifƒ(subclass.equals("ServicesLineItem"))
9 ƒƒƒƒ{ƒreturnƒnewƒServicesLineItem(in);

10 ƒƒƒƒ}ƒelseƒifƒ(subclass.equals("ConsultingLineItem"))

ch12/invoice/

Factory Method

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 660

This simplifies the constructor in Invoice, as shown in Listing 12-12.

661
12

.3
P

O
LY

M
O
R
P
H
IS

M
W

IT
H
O
U
T
A

R
R
A
Y
S

Listing 12-11: A factory method (continued)

11 ƒƒƒƒ{ƒreturnƒnewƒConsultingLineItem(in);
12 ƒƒƒƒ}ƒelse
13 ƒƒƒƒ{ƒthrowƒnewƒError("Unknown subclass: "ƒ+ƒsubclassƒ+ƒ".");
14 ƒƒƒƒ}
15 ƒƒ}
16 }

Listing 12-12: Reading line items using a factory method

1 publicƒInvoice(Scannerƒin)
2 {ƒthis.customerƒ=ƒnewƒCustomer(in);
3
4 ƒƒƒƒ// Read and construct the line items, putting them in the array.

5 ƒƒƒƒwhileƒ(in.hasNextLine())
6 ƒƒ{ƒthis.addLineItem(LineItem.read(in));
7 ƒƒ}
8 }

12.3 Polymorphism without Arrays

So far most of our examples of polymorphism have used an array. For example, con-
sider the following statement:

doubleƒamtƒ=ƒthis.items[i].calcAmount();

It calls calcAmount polymorphically because the array might hold a GoodsLineItem
or a ConsultingLineItem—and this code fragment doesn’t need to know or care.

Arrays, however, are not a requirement for using polymorphism. In Listing 12-7 we
called this.getDescription() and the correct subclass of LineItem returned the
answer.

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 661

In fact, the potential for polymorphism exists any time you have a reference to an
object. What are some other examples?

A method may return a reference that is used polymorphically. For example, Invoice
might have a method to return the most expensive line item, for printing in a report.
The report’s method could use it this way:

LineItemƒexpensiveƒ=ƒanInvoice.getMostExpensiveLineItem();
doubleƒcostƒ=ƒexpensive.calcAmount();

The call to calcAmount is polymorphic because this code does not need to know what
kind of LineItem it’s dealing with. In fact, this code could be written without using
the variable expensive:

doubleƒcostƒ=ƒ
ƒƒanInvoice.getMostExpensiveLineItem().calcAmount();

A reference can also be passed to a parameter, allowing for polymorphism within a
method. For example, suppose we had a method with the signature void
gatherStatistics(LineItem item). Inside the method, it can call any of the methods
declared by LineItem without knowing whether it’s really a GoodsLineItem, a
ServicesLineItem, or a ConsultingLineItem.

An instance variable can also hold an object reference that is used polymorphically.

12.4 Overriding Methods in Object

With a new understanding of inheritance and polymorphism, we are now in a better
position to understand some of the methods in the class Object. There are three that
we need to discuss: toString, equals, and clone.

12.4.1 toString

Overriding toString was discussed in Section 7.3.3. There isn’t much to add here
except to note that we now know in more detail how Java chooses which toString
method to execute—and that when toString is called, thanks to polymorphism, the
caller doesn’t need to know or care which subclass of Object calculates the answer.

662
C

H
A
P
T
E
R

12
 |
 P

O
LY

M
O
R
P
H
IS

M

KEY IDEA

Polymorphism is a
possibility any time
you have a reference
to an object.

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 662

12.4.2 equals

Section 8.2.4 discussed comparing objects for equivalence. The example was to check
whether two dates “mean” the same thing. We discovered that comparing them with
== was not the right thing to do. To check for equivalence, a method is required. At
that point we wrote the following method:

1 publicƒclassƒDateTimeƒextendsƒObject
2 {ƒprivateƒintƒyear;
3 ƒƒprivateƒintƒmonth;
4 ƒƒprivateƒintƒday;
5
6 ƒƒ// Other methods omitted.

7

8 ƒƒ/** Return true if this date represents the same date as other. */

9 ƒƒpublicƒbooleanƒisEquivalent(DateTimeƒother)
10 ƒƒ{ƒreturnƒotherƒ!=ƒnullƒ&&ƒthis.yearƒ==ƒother.yearƒ&&ƒ
11 ƒƒƒƒƒƒƒƒƒƒthis.monthƒ==ƒother.monthƒ&&ƒthis.dayƒ==ƒother.day;
12 ƒƒ}
13 }

This method is fine except that the designers of Java provide a method in the Object
class for this purpose: booleanƒequals(Objectƒother). Their intent is that we
override equals with the correct implementation for classes we write.

We can’t simply change “isEquivalent” to “equals” in the preceding code because
that would produce two different method signatures—the equals method in the
Object class takes an Object as its argument whereas the equals method in
DateTime takes a DateTime object as its argument. This provides overloading but not
overriding, and makes a difference as well. Suppose we have two objects:

Objectƒd1ƒ=ƒnewƒDateTime(2008,ƒ1,ƒ1);
DateTimeƒd2ƒ=ƒnewƒDateTime(2008,ƒ1,ƒ1);

d2.equals(d1) calls the method with the signature equals(Objectƒother)
(returning false) while d2.equals(d2) calls the method with the signature
equals(DateTimeƒother) (returning true).

To override equals correctly, we must use the same signature as defined in Object:
publicƒbooleanƒequals(Objectƒother).

In the isEquivalent method, we know that the object passed via the parameter is a
DateTime object. With equals, any object at all may be passed. We first need to ver-
ify that other is an instance of the right type, DateTime. Fortunately, Java provides a
Boolean operator for that purpose. If x is a reference variable and T is the name of a
class or interface, then xƒinstanceofƒT returns true if x is a non-null reference

663
12

.4
O

V
E
R
R
ID

IN
G

M
E
T
H
O
D
S

IN
O

B
JE

C
T

LOOKING BACK

The DateTime class
in the becker library
includes the notion of

time. We’re ignoring
that here.

KEY IDEA

Use the right
signature to override
equals. Overloading

isn’t good enough.

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 663

that can call all of the methods specified in T. The type of x might be T, a subclass of T,
or a class that implements the interface T.

We can use instanceof as a key part of our equals method, as follows:

ifƒ(!(otherƒinstanceofƒDateTime))
{ƒ// other isn’t a DateTime object, so it can’t possibly be equal to this DateTime object.
ƒƒreturnƒfalse;
}

However, if other is an instance of DateTime, we need to access its fields or methods
to compare the dates. Because other is declared as an Object, we can’t just call
other.getYear(). We need to first assign it to a DateTime reference, but Java will
not allow us to simply perform the following assignment because it can’t verify at com-
pile time that other will refer to a DateTime object.

DateTimeƒdtƒ=ƒother; // will not compile

We can tell the compiler to make an exception with a cast. A cast is our assurance to
the compiler that we believe other will, in fact, refer to a DateTime object when the
code executes. The compiler doesn’t completely trust us, however. It will verify at run-
time that other can substitute for an object of the specified type. If it cannot, a
ClassCastException will be thrown.

The syntax for casting an object is like that for casting a primitive type, as in the
following:

DateTimeƒdtƒ=ƒ(DateTime)other;

The meaning, however, is different. When casting a primitive type, the value is actually
changed. For example, intƒiƒ=ƒ(int)3.99999 assigns i the value 3. When an
object reference is cast, the type of the object doesn’t change; it’s the program’s inter-
pretation of the object that changes. Instead of interpreting it as an instance of
Object, the program now interprets it as an instance of what it really is, DateTime.

After casting other to dt, we can perform the comparisons as in isEquivalent.
Recall that this code is inside the DateTime class, so we can access instance variables
via dt as well as via this:

returnƒthis.yearƒ==ƒdt.yearƒ&&ƒthis.monthƒ==ƒdt.monthƒ
ƒƒƒƒƒƒƒƒ&&ƒthis.dayƒ==ƒdt.day;

Lastly, an object is compared to itself surprisingly often. This test can be performed very
efficiently with == and is often included before any of the other tests discussed here.

664
C

H
A
P
T
E
R

12
 |
 P

O
LY

M
O
R
P
H
IS

M

KEY IDEA

instanceof is used
to verify the type of
an object.

KEY IDEA

Casting an object
reference changes the
program’s
interpretation of the
object.

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 664

The complete equals method is as follows:

1 publicƒbooleanƒequals(Objectƒother)
2 {ƒifƒ(thisƒ==ƒother)
3 ƒƒƒƒreturnƒtrue;ƒƒƒƒƒƒƒƒ// other is exactly the same object as this.

4

5 ƒƒifƒ(!(otherƒinstanceofƒDateTime))
6 ƒƒƒƒreturnƒfalse;ƒƒƒƒƒƒ// other is not an instance of DateTime (or a subclass).

7
8 ƒƒ// Compare the relevant fields for equality.

9 ƒƒDateTimeƒdtƒ=ƒ(DateTime)other;
10 ƒƒreturnƒthis.yearƒ==ƒdt.yearƒ&&ƒthis.monthƒ==ƒdt.month
11 ƒƒƒƒƒƒƒƒ&&ƒthis.dayƒ==ƒdt.day;
12 }

When should equals be overridden? Classes that represent a value such as Integer,
DateTime, or Color should have their own equals method. Classes where an object
is only equal to itself should not. Examples include Student (two students may have
the same name, but they are not equal to each other) or BankAccount (my account
shouldn’t be “equal” to your account, even if the balances happen to be the same).

Finally, a warning. Whenever equals is overridden, a method named hashCode
should also be overridden, but that’s beyond the scope of this book. If you use your
class with a class from the Java libraries that includes the word “Hash”, watch out!
You may get strange results if you override equals but not hashCode.

12.4.3 clone (advanced)

Sometimes an exact copy of an object is required. Suppose, for example, that a back
order in our invoicing system begins by requesting a duplicate of a line item. The Java
system provides a convention for providing this service based on the clone method
that all classes inherit from the Object class.

The clone method has the following goals:

➤ x.clone()ƒ!=ƒx (the object returned by cloning x is not the original object).

➤ x.clone().equals(x) (the cloned object is equal to the original object).

➤ x.clone().getClass()ƒ==ƒx.getClass() (the clone and the original
have the same run-time class; one is not a subclass of the other).

665
12

.4
O

V
E
R
R
ID

IN
G

M
E
T
H
O
D
S

IN
O

B
JE

C
T

Equals

KEY IDEA

Many classes should
not override equals.

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 665

Using Clone

Suppose that someone has already implemented clone for the LineItem class. We
could then use it to create a duplicate line item object like this:

LineItemƒduplicateƒ=ƒ(LineItem)aLineItem.clone();

The cast to a LineItem is required because the clone method is declared to return an
Object.

Polymorphism comes into play here because clone may be overridden in the sub-
classes of LineItem, but we don’t need to know or care. The correct method will be
called for the actual run-time type of aLineItem.

Implementing Clone

The clone method in the object class implements the following pseudocode:

newObjectƒ=ƒa new object with the same run-time class asƒthis
for(each instance variable in this)
{ copy the variable’s value to newObject
}
returnƒnewObject;

The clone method in Object returns an object with the same run-time type as the
original object and the same values for all its instance variables.

It may sound like the existing clone method is all that’s required. Unfortunately, that’s
not the case. It’s dangerous to call clone unless issues have been thought about care-
fully for subclasses (more on these issues will follow). To help ensure that clone can-
not be called without thinking these issues through, Java’s designers have done two
things. First, clone is protected, meaning it can only be called by a subclass.
Therefore, the only way to effectively use clone is to override the method and declare
it public.

Second, the clone method implemented in Object checks to make sure that the
class implements the Cloneable interface. If it doesn’t, clone throws the
CloneNotSupportedException. Either that exception must be caught or your
clone method must declare that it also throws the exception. It’s worth noting that
this is an unusual use of an interface; it affects the behavior of an existing method
rather than guaranteeing the presence of methods. Many programmers believe that this
design is a serious mistake. Nevertheless, clone is used widely enough that it’s worth
understanding how it works.

Taking these things into account, an appropriate implementation of clone in the
LineItem class would be as shown in Listing 12-13. Implemented this way, it will also
work for the subclasses of LineItem discussed earlier in the chapter.

666
C

H
A
P
T
E
R

12
 |
 P

O
LY

M
O
R
P
H
IS

M

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 666

Dangers: Shallow Copies vs. Deep Copies

It seems like the clone method in the Object class does everything required. Why is it
so thoroughly protected? The clone method in Object simply copies the value in
each instance variable from the original object to the new object. For primitive types
like integers, characters, and immutable classes like String, this works very well. For
reference types, it often does not.

Consider cloning an Invoice object. The items instance variable refers to an array.
The value it stores is a reference to the array, not the array itself. If we call clone to
clone the invoice, it will copy this array reference but it won’t make a copy of the array
itself. Both invoices then refer to the same array of line items. If a line item is deleted
from the copy of the invoice, it would also be deleted from the original invoice.
However, the original’s numItems variable would not be updated, probably leading to
nasty results.

Figure 12-15 shows what it is known as a shallow copy. That’s where only the values in
the instance variables are copied from one object to the other. Cloning an invoice
should make a deep copy. A deep copy also clones objects that the object references.
The result of a deep copy is shown in Figure 12-16.

667
12

.4
O

V
E
R
R
ID

IN
G

M
E
T
H
O
D
S

IN
O

B
JE

C
T

Listing 12-13: An implementation of clone in the LineItem class

1 publicƒabstractƒclassƒLineItemƒextendsƒObjectƒ
2 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒimplementsƒCloneable
3 {
4 ƒƒ// Instance variables, constructors, and methods omitted.

5
6 ƒƒ/** Make a duplicate copy of this object. */

7 ƒƒpublicƒObjectƒclone()
8 ƒƒ{ƒtryƒ
9 ƒƒƒƒ{ƒreturnƒsuper.clone();

10 ƒƒƒƒ}ƒcatchƒ(CloneNotSupportedExceptionƒe)ƒ
11 ƒƒƒƒ{ƒ// CloneNotSupportedException should never be thrown because we have

12 ƒƒƒƒƒƒ// implemented Cloneable. Error is an unchecked exception.

13 ƒƒƒƒƒƒthrowƒnewƒError("Should never happen.");
14 ƒƒƒƒ}
15 ƒƒ}
16 }

LOOKING BACK

The value in a
reference variable is

the address of
an object, not the

object itself.
See Section 8.2.1.

ch12/invoice/

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 667

For a deep copy, we need to create a new array and clone each element in the old array.
The clone method in Listing 12-14 shows how.

LineItem[]
length 4

[0]

[1]

[2]

[3]

3, computers, 1750.00

1, office suite, 750.00

3, service contracts, 5.95, 12

Invoice
items:

3numItems:

Invoice
items:

3numItems:

original

copy

LineItem[]
length 4

[0]

[1]

[2]

[3]

3, computers, 1750.00

1, office suite, 750.00

3, service contracts, 5.95, 12

LineItem[]
length 4

[0]

[1]

[2]

[3]

3, computers, 1750.00

1, office suite, 750.00

3, service contracts, 5.95, 12

Invoice
items:

3numItems:

Invoice
items:

3numItems:

original

copy

668
C

H
A
P
T
E
R

12
 |
 P

O
LY

M
O
R
P
H
IS

M

(figure 12-15)

Shallow copy of an

Invoice object

(figure 12-16)

Deep copy of an Invoice

object

Listing 12-14: A clone method that does a deep copy of Invoice

1 publicƒclassƒInvoiceƒextendsƒObjectƒimplementsƒCloneable
2 {ƒprivateƒLineItem[]ƒitemsƒ=ƒnewƒLineItem[5];
3 ƒƒprivateƒintƒnumItemsƒ=ƒ0;
4
5 ƒƒ// Constructors and methods omitted.

6
7 ƒƒ/** Make a copy of this invoice. */

8 ƒƒpublicƒObjectƒclone()
9 ƒƒ{ƒtryƒ

10 ƒƒƒƒ{ƒInvoiceƒcopyƒ=ƒ(Invoice)super.clone();

ch12/invoice/

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 668

Sometimes a deep copy is not needed, even though references are being used. If the refer-
ence is to an immutable object such as String, a shallow copy is sufficient. Immutable
objects can’t change after they are constructed, so there is no danger in having the clone
and the original object share the same strings—or any other immutable object.

12.5 Increasing Flexibility with Interfaces

Using interfaces appropriately can allow for more flexible use of the code we write.
Flexible code can be used in more situations, often enabling us to avoid writing new
code. As an example, we’ll explore how the sorting method developed in Section 10.1.8
can be refactored for use in many situations. To make the example concrete, we’ll sort
instances of LineItem in a variety of ways. In our first example, we will consider how to
sort LineItem by description.

The original sorting method is reproduced in Listing 12-15. The statements shown in bold
must change to sort LineItem objects. The required changes fall into three categories:

➤ The documentation, which is very specific to the original project

➤ The references to a specific array to sort

➤ The condition used to sort the array

669
12

.5
IN

C
R
E
A
S
IN

G
F
LE

X
IB

ILIT
Y

W
IT

H
IN

T
E
R
FA

C
E
S

Listing 12-14: A clone method that does a deep copy of Invoice (continued)

11 ƒƒƒƒƒƒ// Do a deep copy of the array of line items.

12 ƒƒƒƒƒƒcopy.itemsƒ=ƒnewƒLineItem[this.numItems];
13 ƒƒƒƒƒƒforƒ(intƒiƒ=ƒ0;ƒiƒ<ƒthis.numItems;ƒi++)
14 ƒƒƒƒƒƒ{ƒcopy.items[i]ƒ=ƒ(LineItem)this.items[i].clone();
15 ƒƒƒƒƒƒ}
16 ƒƒƒƒƒƒreturnƒcopy;
17 ƒƒƒƒ}ƒcatchƒ(CloneNotSupportedExceptionƒe)ƒ
18 ƒƒƒƒ{ƒthrowƒnewƒError("Should never happen.");
19 ƒƒƒƒ}
20 ƒƒ}
21 }

KEY IDEA

Immutable objects
can’t change and

thus don’t need to
be cloned.

Listing 12-15: The sorting algorithm from the Big Brother/Big Sister project. Required changes to

sort line items are shown in bold

1 publicƒclassƒBBBSƒextendsƒObject
2 {ƒ...ƒpersonsƒ...ƒƒƒƒƒƒƒƒ// an array of Person objects

3
4 ƒƒ/** Sort the persons array in increasing order by age. */

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 669

Of the three categories of change identified earlier, the first two are easy. Generalizing
the documentation is trivial, and the problems with the names can be handled with
appropriate parameters. Once we use parameters, all reliance on instance variables is
removed, and the sort method can be made a class (static) method in a utilities
class. The first set of changes is shown in Listing 12-16. The only part left is to figure
out how to replace the pseudocode in line 10, which will influence the type of array
passed as an argument in line 4 and the type of temporary variable in line 16.

670
C

H
A
P
T
E
R

12
 |
 P

O
LY

M
O
R
P
H
IS

M

Listing 12-15: The sorting algorithm from the Big Brother/Big Sister project. Required changes to

sort line items are shown in bold. (continued)

5 ƒƒpublicƒvoidƒsortByAge()
6 ƒƒ{ƒforƒ(intƒfirstUnsorted=0;ƒ
7 ƒƒƒƒƒƒƒƒƒfirstUnsortedƒ<ƒthis.persons.lengthƒ-ƒ1;
8 ƒƒƒƒƒƒƒƒƒfirstUnsorted++)
9 ƒƒƒƒ{ƒ// Find the index of the youngest unsorted person.

10 ƒƒƒƒƒƒintƒextremeIndexƒ=ƒfirstUnsorted;
11 ƒƒƒƒƒƒforƒ(intƒiƒ=ƒfirstUnsortedƒ+ƒ1;ƒ
12 ƒƒƒƒƒƒƒƒƒƒƒƒiƒ<ƒthis.persons.length;ƒi++)
13 ƒƒƒƒƒƒ{ƒifƒ(this.persons[i].getAge()ƒ<ƒ
14 ƒƒƒƒƒƒƒƒƒƒƒƒthis.persons[extremeIndex].getAge())
15 ƒƒƒƒƒƒƒƒ{ƒextremeIndexƒ=ƒi;
16 ƒƒƒƒƒƒƒƒ}
17 ƒƒƒƒƒƒ}
18
19 ƒƒƒƒƒƒ// Swap the youngest unsorted person with the person at firstUnsorted.

20 ƒƒƒƒƒƒPersonƒtempƒ=ƒthis.persons[extremeIndex];
21 ƒƒƒƒƒƒthis.persons[extremeIndex]ƒ=ƒ
22 ƒƒƒƒƒƒƒƒƒƒƒƒthis.persons[firstUnsorted];
23 ƒƒƒƒƒƒthis.persons[firstUnsorted]ƒ=ƒtemp;
24 ƒƒƒƒ}
25 ƒƒ}
26 }

Listing 12-16: Making sort more reusable with parameters

1 publicƒclassƒUtilitiesƒextendsƒObject
2 {
3 ƒƒ/** Sort an array of objects. */

4 ƒƒpublicƒstaticƒvoidƒsort(????[]ƒa)
5 ƒƒ{ƒforƒ(intƒfirstUnsortedƒ=ƒ0;ƒfirstUnsortedƒ<ƒa.length-1;
6 ƒƒƒƒƒƒƒƒƒfirstUnsorted++)

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 670

12.5.1 Using an Interface

Line 10 of Listing 12-16 requires comparing two elements in the array to determine
which is “less” than the other, or which one should occur first in sorted order.

It would be really nice if the Object class had an isLessThan method similar to the
equals method. If it did, we could pass an array of Objects in line 4 and replace the
pseudocode in line 10 with:

ifƒ(a[i].isLessThan(a[extremeIndex]))ƒ

and the sort method would be done. It would depend, of course, on subclasses of
Object overriding isLessThan appropriately. Unfortunately, Object does not pro-
vide such a method.

Another approach is to define isLessThan in the LineItem class and declare sort to
take an array of LineItem objects as its parameter. This works, but only allows sort
to sort LineItems and subclasses of LineItem. It would be preferable to have a solu-
tion that is much more general.

An excellent solution is to use an interface. This allows a class such as LineItem to
have an extra type—the type of the interface. Java already provides such an interface,
Comparable. It’s included in the package java.lang, which is automatically
imported into every class. The interface is defined as shown in Listing 12-17.

671
12

.5
IN

C
R
E
A
S
IN

G
F
LE

X
IB

ILIT
Y

W
IT

H
IN

T
E
R
FA

C
E
S

Listing 12-16: Making sort more reusable with parameters (continued)

7 ƒƒƒƒ{ƒ// Find the index of extreme ("smallest") unsorted element.

8 ƒƒƒƒƒƒintƒextremeIndexƒ=ƒfirstUnsorted;
9 ƒƒƒƒƒƒforƒ(intƒiƒ=ƒfirstUnsortedƒ+ƒ1;ƒiƒ<ƒa.length;ƒi++)

10 ƒƒƒƒƒƒ{ƒifƒ(a[i] is less than a[extremeIndex])
11 ƒƒƒƒƒƒƒƒ{ƒextremeIndexƒ=ƒi;
12 ƒƒƒƒƒƒƒƒ}
13 ƒƒƒƒƒƒ}
14
15 ƒƒƒƒƒƒ// Swap the extreme unsorted element with the element at firstUnsorted.

16 ƒƒƒƒƒƒ????ƒtempƒ=ƒa[extremeIndex];
17 ƒƒƒƒƒƒa[extremeIndex]ƒ=ƒa[firstUnsorted];
18 ƒƒƒƒƒƒa[firstUnsorted]ƒ=ƒtemp;
19 ƒƒƒƒ}
20 ƒƒ}
21 }

KEY IDEA

Implementing an
interface gives

the class an
additional type.

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 671

To use this interface, we need to make the three changes to the sort method shown in
Listing 12-16:

➤ In line 4, declare the array parameter variable using Comparable: public
staticƒvoidƒsort(Comparable[]ƒa).

➤ Declare the type of the temporary variable used to swap elements in line 16
using Comparable.

➤ Change line 10 to { ifƒ(a[i].compareTo(a[extremeIndex])ƒ<ƒ0).

Finally, in any class that we want to sort with this method, we need to implement
Comparable. To sort the line items by description, we would change LineItem as
follows:

1 publicƒabstractƒclassƒLineItemƒextendsƒObjectƒ
2 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒimplementsƒComparable
3 {ƒprivateƒStringƒdescription;
4
5 ƒƒ// Other instance variables, constructors, and methods omitted.

6

7 ƒƒpublicƒintƒcompareTo(Objectƒo)
8 ƒƒ{ƒLineItemƒitemƒ=ƒ(LineItem)o;
9 ƒƒƒƒreturnƒthis.description.compareTo(item.description);
10 ƒƒ}ƒ
11 }

The class declaration in lines 1 and 2 includes the phrase implementsƒComparable.
The only method it specifies is declared in lines 7–10. Notice that in line 8, the object is
cast to a LineItem. This is necessary to gain access to the instance variables required to
do the comparison. This cast also works for subclasses of LineItem but will fail if o is
something else, like a Robot. In that case, Java will throw a ClassCastException to
indicate an error. The documentation in the Comparable interface says that this is what
should happen when two objects can’t be compared to each other.

672
C

H
A
P
T
E
R

12
 |
 P

O
LY

M
O
R
P
H
IS

M

Listing 12-17: The Comparable interface from the Java library

1 publicƒinterfaceƒComparable
2 {ƒ/** Compare this object with the specified object for order. Return a negative number

3 ƒƒ*ƒif this object is less than the specified object, a positive number if this object is greater,

4 ƒƒ*ƒand 0 if this object is equal to the specified object.

5 ƒƒ*ƒ@param o The object to be compared. */

6 ƒƒpublicƒintƒcompareTo(Objectƒo);
7 }

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 672

What do sorting and interfaces have to do with polymorphism? Thanks to polymorphism,
the sort method can call the compareTo method without knowing or caring which class
actually implemented it. The sort method doesn’t care whether the compareTo method
is comparing descriptions or unit costs or the total cost of the line item.

Sorting in the Java Library

The Java library includes a sort method very similar to the one we have written except
that it is much faster, particularly on large arrays. It’s in the java.util.Arrays class
and has the following signature:

publicƒvoidƒsort(Object[]ƒa)

If you want to sort a partially filled array, you can use a companion method with the
following signature:

publicƒvoidƒsort(Object[]ƒa,ƒintƒfromIndex,ƒintƒtoIndex)

These two methods have arrays of objects as parameters rather than arrays of
Comparable like our sort method. How does that work?

The documentation states that all of the elements must implement Comparable and
that compareTo must not throw an exception for any pair of elements. If these condi-
tions are violated, sort will throw a ClassCastException. We can make our ver-
sion of sort behave the same way by making two changes to Listing 12-16. First,
change the type of the parameter in line 4 from Comparable[] to Object[]. Second,
include a cast inside the loop that calls compareTo, as follows:

9 ƒƒƒƒƒforƒ(intƒiƒ=ƒfirstUnsortedƒ+ƒ1;ƒiƒ<ƒa.length;ƒi++)
10 ƒƒƒƒƒ{ƒifƒ(((Comparable)a[i]).compareTo(a[extremeIndex])ƒ<ƒ0)
11 ƒƒƒƒƒƒƒ{ƒextremeIndexƒ=ƒi;
12 ƒƒƒƒƒƒƒ}
13 ƒƒƒƒƒ}

Mixin Interfaces

A mixin is a type that supplements the “primary type” of a class. It provides some
behavior that is mixed in with the normal behavior of the primary type. Comparable
is one such mixin that allows comparing objects and thus sorting them.

Other mixin interfaces include the following:

➤ IMove: The interface we use in Section 12.1.4 to move dancing robots and the
banner they carry (a subclass of JDialog) is a mixin interface.

➤ Runnable: It is used just for fun in Section 3.5.2 to allow several robots to
move simultaneously.

673
12

.5
IN

C
R
E
A
S
IN

G
F
LE

X
IB

ILIT
Y

W
IT

H
IN

T
E
R
FA

C
E
S

KEY IDEA

Interfaces are another
way to exploit

polymorphism in a
program.

KEY IDEA

Use Java’s sort
instead of writing

your own.

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 673

➤ Observer: An interface used when one object wants to “observe” what hap-
pens in another. We’ll use a variation of this when we write graphical user
interfaces in Chapter 13.

➤ Paintable: The class we used in Section 6.1 to ensure that SimpleBots
could be painted on the screen could just as easily have been a mixin interface.

You may want to define your own interface to use as a mixin when an application needs
to process similarly a number of classes that don’t have a natural common superclass.

12.5.2 Using the Strategy Pattern

Implementing the Comparable interface in LineItem is fine if you want to sort the
line items in only one way. But suppose you are writing a report program for the mar-
keting department. They want line items from all the invoices gathered into a single
report, sorted by total amount. We can’t redefine the compareTo method just for
them, so what do we do?

The Strategy pattern uses objects that define a family of interchangeable algorithms.
For sorting, we’ll use a strategy object that defines the comparison algorithm. When
we want a different sort order, we pass a different strategy object (defining a different
algorithm) to the sort method. This is facilitated with the Comparator interface, as
shown in Figure 12-17. Notice that the sort method in Utilities takes an instance
of Comparator as an argument.

A Strategy Object Using Comparator

The Comparator interface is defined in the java.util package and is quite similar to
Comparable. They both define a method that compares two objects and returns an
integer whose sign indicates which object is smaller. A key difference is that a
Comparator is passed both objects as parameters rather than comparing one object to

Comparator

+int compare(Object o1, Object o2)

Compare1

+int compare(...)

Compare2

+int compare(...)

Compare3

+int compare(...)

Utilities

+void sort(Object[],
 Comparator c)

674
C

H
A
P
T
E
R

12
 |
 P

O
LY

M
O
R
P
H
IS

M

Strategy

(figure 12-17)

Using strategy objects to

define the sort order

KEY IDEA

Many different objects
can implement
Comparator, each
comparing objects in
its own way.

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 674

itself. A more minor difference is that Comparator’s method is named compare rather
than compareTo. The Comparator interface is declared as follows:

publicƒinterfaceƒComparator
{ƒ/** Compare obj1 and obj2 for order. Return a negative number if obj1 is less than
ƒƒ*ƒobj2, a positive number if obj1 is greater than obj2, and 0 if they are equal.
ƒƒ*ƒ@param obj1 One object to be compared.
ƒƒ*ƒ@param obj2 The other object to be compared. */
ƒƒpublicƒintƒcompare(Objectƒobj1,ƒObjectƒobj2);
}

The following class defines a strategy object that can compare line items when sorting
the marketing department’s report. Notice that it includes the phrase implements
Comparator in line 3. Lines 7–9 are formatted differently than we have seen before to
save space.

1 /** Compare two line items using the value calculated by calcAmount. */

2 publicƒclassƒLineItemAmountComparatorƒextendsƒObjectƒ
3 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒimplementsƒComparator
4 {ƒpublicƒintƒcompare(Objectƒobj1,ƒObjectƒobj2)
5 ƒƒ{ƒdoubleƒamt1ƒ=ƒ((LineItem)obj1).calcAmount();
6 ƒƒƒƒdoubleƒamt2ƒ=ƒ((LineItem)obj2).calcAmount();
7 ƒƒƒƒifƒ(amt1ƒ<ƒamt2)ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ{ƒreturnƒ-1;}ƒ
8 ƒƒƒƒelseƒifƒ(amt1ƒ>ƒamt2)ƒƒƒƒƒƒƒƒƒ{ƒreturnƒ1;ƒ}ƒ
9 ƒƒƒƒelseƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ{ƒreturnƒ0;ƒ}
10 ƒƒ}
11 }

The sort method also needs to take an instance of Comparator as a parameter. This
is shown in Listing 12-18. The method is just like the previous version of sort except
for lines 4 and 11. In line 4, there is a new parameter to pass the strategy object imple-
menting the comparison algorithm. In line 10, it’s used to compare two line items.

With these changes, we can use sort to sort an array of any kind of object in any order
we want, as long as we can provide a comparison strategy object. That’s a lot of
flexibility!

In practice, however, we would not write our own sort routine. We would only write
the Comparator and use it with the sort method in java.util.Arrays.

675
12

.5
IN

C
R
E
A
S
IN

G
F
LE

X
IB

ILIT
Y

W
IT

H
IN

T
E
R
FA

C
E
S

KEY IDEA

Use
java.util.Arrays

rather than writing
your own sort method. Listing 12-18: A sort method that uses a comparator method

1 publicƒclassƒUtilitiesƒextendsƒObject
2 {
3 ƒƒ/** Sort a partially-filled array of objects. */

4 ƒƒpublicƒstaticƒvoidƒsort(Object[]ƒa,ƒComparatorƒc)
5 ƒƒ{ƒforƒ(intƒfirstUnsortedƒ=ƒ0;ƒfirstUnsortedƒ<ƒa.length-1;

Strategy

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 675

Sorting with Multiple Keys

Suppose the marketing department wanted a report with all line items sorted first by
description, and if the descriptions happen to be the same, then in descending order by
total amount of the line item. The description is called the primary key. It is the most
important determinant of the order. If two objects have different primary keys, then
those keys alone are used to determine the order. However, if the primary keys are
equal, then the secondary key is used to determine the order. In this case, total amount
is the secondary key.

Following is a comparator that implements the described ordering:

1 classƒLineItemDescrTotalComparatorƒextendsƒObjectƒ
2 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒimplementsƒComparator
3 {ƒpublicƒintƒcompare(Objectƒobj1,ƒObjectƒobj2)
4 ƒƒ{ƒLineItemƒli1ƒ=ƒ(LineItem)obj1;
5 ƒƒƒƒLineItemƒli2ƒ=ƒ(LineItem)obj2;
6
7 ƒƒƒƒ// Compare using the primary key (description).

8 ƒƒƒƒintƒresultƒ=ƒli1.getDescription().compareTo(
9 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒli2.getDescription());
10 ƒƒƒƒifƒ(resultƒ==ƒ0)ƒƒƒƒƒƒƒ// Primary key is the same; use secondary key.

11 ƒƒƒƒ{ƒdoubleƒamt1ƒ=ƒli1.calcAmount();
12 ƒƒƒƒƒƒdoubleƒamt2ƒ=ƒli2.calcAmount();
13 ƒƒƒƒƒƒifƒ(amt1ƒ<ƒamt2)

676
C

H
A
P
T
E
R

12
 |
 P

O
LY

M
O
R
P
H
IS

M

Listing 12-18: A sort method that uses a comparator method (continued)

6 ƒƒƒƒƒƒƒƒfirstUnsorted++)
7 ƒƒƒƒ{ƒ// Find the index of extreme ("smallest") unsorted element.

8 ƒƒƒƒƒƒintƒextremeIndexƒ=ƒfirstUnsorted;
9 ƒƒƒƒƒƒforƒ(intƒiƒ=ƒfirstUnsortedƒ+ƒ1;ƒiƒ<ƒa.length;ƒi++)

10 ƒƒƒƒƒƒ{ƒifƒ(c.compare(a[i],ƒa[extremeIndex])ƒ<ƒ0)
11 ƒƒƒƒƒƒƒƒ{ƒextremeIndexƒ=ƒi;
12 ƒƒƒƒƒƒƒƒ}
13 ƒƒƒƒƒƒ}
14
15 ƒƒƒƒƒƒ// Swap the extreme unsorted element with the element at firstUnsorted.

16 ƒƒƒƒƒƒObjectƒtempƒ=ƒa[extremeIndex];
17 ƒƒƒƒƒƒa[extremeIndex]ƒ=ƒa[firstUnsorted];
18 ƒƒƒƒƒƒa[firstUnsorted]ƒ=ƒtemp;
19 ƒƒƒƒ}
20 ƒƒ}
21 }

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 676

14 ƒƒƒƒƒƒ{ƒresultƒ=ƒ1;ƒƒƒƒƒƒƒ// Descending order.

15 ƒƒƒƒƒƒ}ƒelseƒifƒ(amt1ƒ>ƒamt2)
16 ƒƒƒƒƒƒ{ƒresultƒ=ƒ-1;
17 ƒƒƒƒƒƒ}
18 ƒƒƒƒ}ƒ
19 ƒƒƒƒreturnƒresult;
20 ƒƒ}
21 }

Notice the if statement for the secondary key in lines 13–17. Normally we return a neg-
ative number when the first argument is less than the second. Here we return positive 1,
and –1 when the first argument is larger. Reversing these two values sorts the objects in
descending order. Larger amounts are interpreted as “smaller” by this comparator.

Anonymous Classes (advanced)

Small strategy objects such as Comparator are so common that Java’s designers
included a shortcut for defining them quickly and easily. This shortcut is called an
anonymous class. An anonymous class has the following properties:

➤ The class doesn’t have a name (that’s why it’s called anonymous).

➤ It combines declaring a class and instantiating one (and only one) object.

➤ An anonymous class is defined at the same place the object it defines is needed.
This can, if the class is small, improve the understandability of your code.

The following is an example of an anonymous class that sorts line items by description
using a sort method from the Java library. To use this code, you must import
java.util.Arrays and java.util.Comparator.

1 privateƒvoidƒsortLineItems()
2 {ƒ// An anonymous class to compare line items by description.

3 ƒƒComparatorƒcƒ=ƒnewƒComparator()
4 ƒƒ{
5 ƒƒƒƒpublicƒintƒcompare(Objectƒobj1,ƒObjectƒobj2)
6 ƒƒƒƒ{ƒLineItemƒli1ƒ=ƒ(LineItem)obj1;
7 ƒƒƒƒƒƒLineItemƒli2ƒ=ƒ(LineItem)obj2;
8
9 ƒƒƒƒƒƒreturnƒli1.getDescription().compareTo(
10 ƒƒƒƒƒƒƒƒƒƒƒƒƒli2.getDescription());
11 ƒƒƒƒ}
12 ƒƒ};
13
14 ƒƒArrays.sort(this.items,ƒc);
15 }

677
12

.5
IN

C
R
E
A
S
IN

G
F
LE

X
IB

ILIT
Y

W
IT

H
IN

T
E
R
FA

C
E
S

KEY IDEA

Sort in descending
order by reversing the

signs of the returned
values.

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 677

The anonymous class appears in lines 3–12. Line 3 looks like any other object instanti-
ation except that the semicolon is missing from the end of the line and Comparator is
an interface rather than a class. Comparator can be replaced by the interface the
anonymous class is to implement or the class it is to extend.

The body of the anonymous class appears between the “constructor” and the semi-
colon terminating the assignment statement. In the previous code, the body appears in
lines 4–12.

Because the anonymous class has no name, it can’t have a constructor, only methods. It
may have instance variables, but they are uncommon and must always be initialized in
their declaration because there is no constructor.

An anonymous class can be used to create exactly one object. This one is assigned to
the variable c. This variable isn’t required. In fact, experienced programmers will often
replace the variable c in line 14 with the code between the equals in line 3 and the
semicolon in line 12. However, this practice makes the code more difficult to read.

Applications of Strategy Objects

Strategy objects are widely used for more than sorting. They often have a single
method but could have more. Here are a few uses:

➤ The Java library has a number of static sorting methods in the
java.util.Arrays class that take a Comparator strategy object.

➤ Strategy objects are used to arrange components in graphical user interfaces.
We’ll discuss this more in Section 12.6.

➤ Many games use strategy objects to define different approaches for choosing
the next move.

➤ Several classes within the becker.robots package, including Robot, include
methods—such as examineThings—that take a strategy object as an argu-
ment. The method returns references to objects the robot may want to “exam-
ine.” The strategy object determines which objects should be examined.

One particular use for strategy objects is handling objects that change behavior over
time. For example, an employee might move from hourly compensation to a salary and
perhaps to being compensated by contract over her tenure with a company. Using an
inheritance-based approach would require replacing an HourlyEmployee object with a
SalariedEmployee object, for example, as the employee is compensated differently.

Representing this kind of variation with subclasses creates problems as soon as there is
more than one kind of variation. Suppose that mode of work (telecommute vs. office)
is also represented with subclasses. Now we need HourlyTelecommutingEmployee,
SalariedTelecommutingEmployee, ContractTelecommutingEmployee, plus
three more for office employees. This quickly becomes unmanageable. Using strategy

678
C

H
A
P
T
E
R

12
 |
 P

O
LY

M
O
R
P
H
IS

M

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 678

objects to represent how employees are paid and how they work is a much better solu-
tion. When their compensation method or their mode of work changes, simply replace
the strategy object stored in their Employee object.

12.5.3 Flexibility in Choosing Implementations

Java interfaces allow several implementations to be used the same way. This can allow
you to more easily change our minds later. For example, Java provides a set of classes
for storing collections of objects, similar to arrays. Two of these classes are ArrayList
and LinkedList. The two classes have many methods in common: add, remove,
contains, and so on. They also implement the same interface, List.

Why provide two classes that apparently do exactly the same thing? The answer is that
they are implemented differently and have different speed characteristics, as summa-
rized in Table 12-1.

If your application adds and removes objects infrequently but uses get a lot, then
ArrayList looks like a good choice. On the other hand, if get is infrequent but there
are many additions and deletions, LinkedList seems better.

Sound complicated? Afraid you might make the wrong choice and you’ll want to
change your mind later? Then use the List interface to declare your variables. This
can isolate the decision of which class to use to a single point—which constructor to
call when the list is first created. If you change your mind, there is only one place to
change, and the entire program can take advantage of your new approach.

For example, an inventory program might include a method to remove the items just
sold from the items in stock, as sketched in the code fragment shown in Listing 12-19.
Note that List is used throughout, leaving lots of flexibility to use either ArrayList,
LinkedList, or some other implementation of the List interface as the actual class.

Operation ArrayList LinkedList

Add an object near the beginning of the list slow fast

Add an object near the end of the list fast fast

Remove from near the beginning of the list slow fast

Remove from near the end of the list fast slow

Get an object at a specified position fast slow

Set an object at a specified position fast slow

Determine if the list contains a specified object slow slow

Determine the size of the list fast fast

679
12

.5
IN

C
R
E
A
S
IN

G
F
LE

X
IB

ILIT
Y

W
IT

H
IN

T
E
R
FA

C
E
S

(table 12-1)

Speed characteristics of

ArrayList and

LinkedList

KEY IDEA

Interfaces make it
easier to change

which class is used.

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 679

680
C

H
A
P
T
E
R

12
 |
 P

O
LY

M
O
R
P
H
IS

M

Strategy

Listing 12-19: A class using interfaces to promote flexibility

1 publicƒclassƒInventoryƒextendsƒObject
2 {ƒprivateƒList<Item>ƒinventoryƒ=ƒnewƒArrayList<Item>();
3 ƒƒprivateƒList<Item>ƒreorderƒ=ƒnewƒLinkedList<Item>();
4 ƒƒ...
5
6 ƒƒ/**Remove the specified items from the current inventory. Update the list of items

7 ƒƒ*ƒto reorder.

8 ƒƒ*ƒ@itemsSold The items that have been sold and need to be removed from inventory. */

9 ƒƒpublicƒvoidƒremoveInventory(List<Item>ƒitemsSold)
10 ƒƒ{ƒforƒ(Itemƒitemƒ:ƒitemsSold)
11 ƒƒƒƒ{ƒ
12 ƒƒƒƒƒƒ// Remove the item from the inventory.

13 ƒƒƒƒƒƒthis.inventory.remove(item);
14
15 ƒƒƒƒƒƒ// If it’s the last one and not already on the reorder list, add it

16 ƒƒƒƒƒƒifƒ(!this.inventory.contains(item)ƒ&&ƒ
17 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ!this.reorder.contains(item))
18 ƒƒƒƒƒƒ{ƒthis.reorder.add(item);
19 ƒƒƒƒƒƒ}
20 ƒƒƒƒ}
21 ƒƒ}
22 }

By using List to declare variables in lines 2, 3, and 9, the programmer has left lots of
flexibility to change the actual classes being used. For example, the ArrayList in line 2
could be changed to a LinkedList with no further changes in the rest of the program.

12.6 GUI: Layout Managers

Most graphical user interfaces allow users to interact with many components (buttons,
text boxes, sliders, and so on). The issue to be addressed in this section is how Java
arranges the components in a panel, both initially and as the user resizes the frame dis-
playing the panel. The task of arranging the components on the panel is called layout.
Java uses strategy objects called layout managers to determine how to arrange the com-
ponents. By using strategy objects, JPanel can display the same set of components in
many different arrangements.

12.6.1 The FlowLayout Strategy

The default layout strategy for a JPanel is an instance of FlowLayout. It adds com-
ponents to the current row until there is no more room. It then starts a new row. The

ch12/inventory/

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 680

length of a row is determined by the width of the JPanel. Wider panels will have more
components on a row.

The left image in Figure 12-18 shows four components organized with a FlowLayout
strategy. The components are displayed left to right, top to bottom, in the same order
they were added. The right image shows how those same components are reorganized
when the frame is narrower.

A FlowLayout object centers rows by default. It can also be set to align them on either
the left or right side of the panel.

Each component has a preferred size, which is respected by FlowLayout. As we’ll
soon see, some layout managers ignore such size information.

12.6.2 The GridLayout Strategy

The strategy implemented by a GridLayout object is to place all of the components
into a grid, as shown in Figure 12-19. Each component is made the same size as all the
others, completely ignoring their preferred sizes. The number of rows and columns is
set when the strategy object is created.

Setting a JPanel’s layout strategy is done with its setLayout method, as shown in
lines 17–18 of Listing 12-20. This listing is already showing the program structure we
will adopt for our graphical user interfaces. A group of components is combined by
extending JPanel. Laying out the components is a distinct task that is delegated to a
private helper method called layoutView.

Listing 12-21 displays an instance of this panel in a frame.

681
12

.6
G
U
I: L

A
Y
O
U
T

M
A
N
A
G
E
R
S

(figure 12-18)

The FlowLayout

strategy

(figure 12-19)

The GridLayout

strategy

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 681

682
C

H
A
P
T
E
R

12
 |
 P

O
LY

M
O
R
P
H
IS

M

Listing 12-20: A JPanel extended to show a group of buttons, organized with a grid strategy

1 importƒjava.awt.*;
2 importƒjavax.swing.*;
3
4 publicƒclassƒDemoGridLayoutƒextendsƒJPanel
5 {
6 ƒƒprivateƒJButtonƒoneƒ=ƒnewƒJButton("One");
7 ƒƒprivateƒJButtonƒtwoƒ=ƒnewƒJButton("Two");
8 ƒƒ// Instance variables for the last four buttons are omitted.

9
10 ƒƒpublicƒDemoGridLayout()
11 ƒƒ{ƒsuper();
12 ƒƒƒƒthis.layoutView();
13 ƒƒ}
14
15 ƒƒprivateƒvoidƒlayoutView()
16 ƒƒ{ƒ// Set the layout strategy to a grid with 2 rows and 3 columns.

17 ƒƒƒƒGridLayoutƒstrategyƒ=ƒnewƒGridLayout(2,ƒ3);
18 ƒƒƒƒthis.setLayout(strategy);
19
20 ƒƒƒƒ// Add the components.

21 ƒƒƒƒthis.add(this.one);
22 ƒƒƒƒthis.add(this.two);
23 ƒƒƒƒ// Code to add the last four buttons is omitted.

24 ƒƒ}
25 }

Listing 12-21: A main method that displays a custom JPanel in a frame

1 importƒjavax.swing.*;
2
3 publicƒclassƒGridLayoutMain
4 {
5 ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
6 ƒƒ{ƒJPanelƒpƒ=ƒnewƒDemoGridLayout();
7
8 ƒƒƒƒJFrameƒfƒ=ƒnewƒJFrame("GridLayout");
9 ƒƒƒƒf.setContentPane(p);

10 ƒƒƒƒf.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 ƒƒƒƒf.pack();ƒƒƒƒƒƒƒƒƒƒƒƒƒ// Base frame size on preferred size of components.

12 ƒƒƒƒf.setVisible(true);
13 ƒƒ}
14 }

ch12/layoutManagers/

ch12/layoutManagers/

Strategy

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 682

12.6.3 The BorderLayout Strategy

The BorderLayout strategy lays out up to five objects in a panel, as shown in
Figure 12-20. No matter what size the panel is, the north and south areas cover the
entire width. Their heights are determined by the preferred heights of the components
they hold. The east and west areas expand or contract to occupy the remaining height
of the panel. Their widths are determined by the preferred sizes of the components
they hold. Finally, the center area expands or contracts to occupy the remaining space.

Areas that do not have a component will not take any space. For example, if the button
was left out of the east area in Figure 12-20, the center area would simply expand to fill it.

The layout managers we’ve seen previously arrange the components according to the
order in which they are added to the panel. BorderLayout handles positioning with a
constraint, which is specified when the component is added. The constraint says where
the component should be placed.

Listing 12-20 could be modified to use a BorderLayout strategy by changing line 17 to:

17 ƒƒƒƒBorderLayoutƒstrategyƒ=ƒnewƒBorderLayout();

and changing the lines that add the components to use the required constraints.

21 ƒƒƒƒthis.add(this.one,ƒBorderLayout.EAST);
22 ƒƒƒƒthis.add(this.two,ƒBorderLayout.NORTH);

12.6.4 Other Layout Strategies

The BoxLayout strategy arranges components in a horizontal row or a vertical column. It
tries to respect the preferred sizes of components. However, if a component does not have a
maximum size, it will grow or shrink to fill available space. Text fields and text areas, for
example, do not have a maximum size unless you set one.

Like GridLayout, GridBagLayout uses a grid. However, its cells can vary in size,
and a component can take up more than one cell in the grid. To accomplish all this, it
uses a fairly complex constraint, called GridBagConstraints.

Another constraint-based layout strategy is SpringLayout. It works by specifying how the
edges of each component relate to other components or to the edges of the enclosing panel.

683
12

.6
G
U
I: L

A
Y
O
U
T

M
A
N
A
G
E
R
S

(figure 12-20)

The BorderLayout

strategy

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 683

12.6.5 Nesting Layout Strategies

A single layout strategy is usually not enough for a complex graphical user interface.
Consider Figure 12-21, for example. None of the simpler layout strategies we’ve covered
can handle this by themselves. GridBagLayout and SpringLayout could do it, but
using them would involve a tremendous amount of work in setting all the constraints.

An excellent solution is based on the fact that JPanel is also a component. It can be added
to another JPanel that is organized by its own layout strategy object. The user interface in
Figure 12-21 is organized with four JPanel objects, as shown in Figure 12-22.

684
C

H
A
P
T
E
R

12
 |
 P

O
LY

M
O
R
P
H
IS

M

LOOKING AHEAD

Programming
Exercise 12.12 asks
you to finish
implementing
HangmanView.

(figure 12-21)

A complex layout task

(figure 12-22)

Laying out a complex user

interface using nested

panels, each with its own

layout strategy

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 684

The four JPanel objects are as follows:

➤ controls is organized by a GridLayout and holds the Forfeit and New
Game buttons.

➤ letters is also organized by a GridLayout and holds 26 buttons, one for each
letter of the alphabet.

➤ buttons is organized by a BoxLayout and holds two JPanel components,
controls and letters.

➤ hangman is organized by a BorderLayout. The center area holds the graphic
showing the gallows. The south area holds a JLabel displaying the letters
guessed so far. The east area holds the buttons panel (which holds letters
and controls). The north and west area of the BorderLayout are empty
and shrink to take no space.

This interface can be implemented with code similar to that shown in Listing 12-22.

685
12

.6
G
U
I: L

A
Y
O
U
T

M
A
N
A
G
E
R
S

Listing 12-22: Implementing nesting layout managers

1 importƒbecker.xtras.hangman.*;
2 importƒjavax.swing.*;
3 importƒjava.awt.*;
4
5 /** Layout the view for the game of hangman.

6 *

7 * @author Byron Weber Becker */

8 publicƒclassƒHangmanViewƒextendsƒJPanel
9 {ƒ// Constructor omitted.

10
11 ƒƒ/** Layout the view in a JPanel managed by BorderLayout. */

12 ƒƒprivateƒvoidƒlayoutView()
13 ƒƒ{ƒJPanelƒhangmanƒ=ƒthis;ƒƒƒƒƒƒƒ// Use same name as previous discussion

14 ƒƒƒƒhangman.setLayout(newƒBorderLayout());
15 ƒƒƒƒƒ
16 ƒƒƒƒ// South

17 ƒƒƒƒJLabelƒphraseƒ=ƒnewƒJLabel("GO FLY A KITE");
18 ƒƒƒƒhangman.add(phrase,ƒBorderLayout.SOUTH);
19
20 ƒƒƒƒ// Center

21 ƒƒƒƒJComponentƒgallowsƒ=ƒnewƒGallowsView(
22 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒnewƒSampleHangman());
23 ƒƒƒƒhangman.add(gallows,ƒBorderLayout.CENTER);
24
25 ƒƒƒƒ// East -- letters and controls

26 ƒƒƒƒJPanelƒbuttonsƒ=ƒthis.buttonsPanel();

Strategy

ch12/hangman/

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 685

12.7 Patterns

12.7.1 The Polymorphic Call Pattern

Name: Polymorphic Call

Context: You are writing a program that handles several variations of the same general
idea (for example, several kinds of bank accounts). Each kind of thing has similar
behaviors, but the details may differ.

Solution: Use a polymorphic method call so that the actual object being used deter-
mines which method is called. The most basic form of the pattern is identical to the
Command Invocation pattern from Chapter 1 except for how the «objReference» is
given its value. For example,

«varTypeName»ƒ«objReference»ƒ=ƒ«instanceƒofƒobjTypeName»;
...
«objReference».«serviceName»(«parameterList»);

where «objTypeName» is a subclass of «varTypeName» or «objTypeName» is a class
that implements the interface «varTypeName».

There are many variations. For example, «objReference» could be a simple instance
variable, an array, a parameter, or a value returned from a method.

686
C

H
A
P
T
E
R

12
 |
 P

O
LY

M
O
R
P
H
IS

M

Listing 12-22: Implementing nesting layout managers (continued)

27 ƒƒƒƒhangman.add(buttons,ƒBorderLayout.EAST);
28 ƒƒ}
29
30 ƒƒ/** Layout and return a subpanel with all the buttons. */

31 ƒƒprivateƒJPanelƒbuttonsPanel()
32 ƒƒ{ƒ// A JPanel holding 26 buttons, one for each letter of the alphabet.

33 ƒƒƒƒJPanelƒlettersƒ=ƒnewƒJPanel();
34 ƒƒƒƒletters.setLayout(newƒGridLayout(13,ƒ2));
35 ƒƒƒƒforƒ(charƒchƒ=ƒ'A';ƒchƒ<=ƒ'Z';ƒch++)
36 ƒƒƒƒ{ƒletters.add(newƒJButton(" "ƒ+ƒch));
37 ƒƒƒƒ}
38
39 ƒƒƒƒ// A JPanel holding the Forfeit and New Game buttons is omitted.

40
41 ƒƒƒƒreturnƒletters;
42 ƒƒ}
43 }

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 686

Consequences: «varTypeName» determines the names of the methods that can be
called using «objReference», but «objTypeName» determines the code that is actu-
ally executed.

Related Pattern: This pattern is a variation of the Command Invocation pattern.

12.7.2 The Strategy Pattern

Name: Strategy

Context: The way an object behaves may change over time or from application to
application. Examples include how an employee is compensated as the nature of his or
her employment changes, how a game chooses its move as the player adjusts prefer-
ences, or how a JPanel lays out the components it contains.

Solution: Identify the methods that may need to be executed differently, depending on
the strategy. Define these methods in a superclass or an interface. Write several subclasses
that implement the behavior required at specific phases in a program’s life.

For example, in a game, a player object needs to make its next move depending on the
preferences of the user. The Player class could be defined as follows, where
MoveStrategy is either the superclass of several different strategy classes or an inter-
face that is implemented by several strategy classes.

publicƒclassƒPlayerƒextendsƒ...
{ƒprivateƒMoveStrategyƒmoveStrategyƒ=ƒ
ƒƒƒƒƒƒƒƒƒƒƒƒnewƒDefaultMoveStrategy();
ƒƒ...
ƒƒpublicƒvoidƒsetMoveStrategy(MoveStrategyƒaStrategy)
ƒƒ{ƒthis.moveStrategyƒ=ƒaStrategy;
ƒƒ}

ƒƒpublicƒMoveƒgetMove(...)
ƒƒ{ƒreturnƒthis.moveStrategy.getMove(...);
ƒƒ}
}

Consequences: The behavior of a class can be easily changed as the program proceeds
simply by supplying a different strategy object.

Related Patterns:

➤ This pattern is a specialization of the Has-a (Composition) pattern.

➤ The Polymorphic Call pattern is used to call the methods in the strategy
object.

687
12

.7
P

A
T
T
E
R
N
S

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 687

12.7.3 The Equals Pattern

Name: Equals

Context: Objects must be compared for equivalency with each other. Comparisons may
be done using such library code as ArrayList or HashSet, and so a standard
approach must be used.

Solution: Override the equals method in the Object class. It is designated to take
any instance of Object (including subclasses) as its argument, so care must be taken to
ensure that the two objects can be compared. The following general template may
be used:

publicƒclassƒ«className»ƒ...
{ƒprivateƒ«primitiveType»ƒ«primitiveField1»
ƒƒ...
ƒƒprivateƒ«primitiveType»ƒ«primitiveFieldN»
ƒƒprivateƒ«referenceType»ƒ«referenceField1»
ƒƒ...
ƒƒprivateƒ«referenceType»ƒ«referenceFieldN»

ƒƒpublicƒbooleanƒequals(Objectƒother)
ƒƒ{ƒifƒ(thisƒ==ƒother)
ƒƒƒƒƒƒreturnƒtrue;

ƒƒƒƒifƒ(!(otherƒinstanceofƒ«className»))
ƒƒƒƒƒƒreturnƒfalse;

ƒƒƒƒ«className»ƒoƒ=ƒ(«className»)other;
ƒƒƒƒreturnƒ
ƒƒƒƒƒƒƒthis.«primitiveField1»ƒ==ƒo.«primitiveField1»ƒ&&
ƒƒƒƒƒƒƒ...
ƒƒƒƒƒƒƒthis.«primitiveFieldN»ƒ==ƒo.«primitiveFieldN»ƒ&&
ƒƒƒƒƒƒƒthis.«referenceField1».equals(o.«referenceField1»)ƒ&&
ƒƒƒƒƒƒƒ...
ƒƒƒƒƒƒƒthis.«referenceFieldN».equals(o.«referenceFieldN»);
ƒƒ}
}

where == is used for primitive fields and equals is used for object references. It may
be that only a subset of the object fields are used to determine equality.

Consequences: The equals method can be used to check any object for equivalence
with any other object.

Related Pattern: This pattern should be used in place of the Equivalence Test pattern.

688
C

H
A
P
T
E
R

12
 |
 P

O
LY

M
O
R
P
H
IS

M

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 688

12.7.4 The Factory Method Pattern

Name: Factory Method

Context: A specific subclass should be instantiated depending on various factors, such
as the information found in a file or values obtained from a user. The logic for deciding
which specific subclass to create should be localized in one place in the program.

Solution: Write a method that determines which subclass to instantiate and then
returns it. In general,

publicƒstaticƒ«superClassName»ƒ«factoryMethodName»(...)
{ƒ«superClassName»ƒinstanceƒ=ƒnull;
ƒƒifƒ(«testForSubclass1»)
ƒƒ{ƒinstanceƒ=ƒnewƒ«subclassName1»(...);
ƒƒ}ƒelseƒifƒ(«testForSubclass2»)
ƒƒ{ƒinstanceƒ=ƒnewƒ«subclassName2»(...);
ƒƒ}ƒelseƒ...

ƒƒreturnƒinstance;
}

Consequences: A specific subclass is chosen to be instantiated and then returned for use.

Related Pattern: None.

12.8 Summary and Concept Map

Polymorphism is a programming technique in which a variable declared with a super-
class or an interface, X, is actually assigned an instance of a different class, Y. Y must
be either a subclass of X or a class implementing interface X.

The program typically calls a method defined by X but the behavior is determined by
the object’s actual class, Y. This allows:

➤ a collection of objects to be handled uniformly but still have individual differences

➤ the behavior of an object to be easily changed by changing a strategy object

➤ an alternative implementation to be used with a minimum number of changes
to the client code

689
12

.8
S

U
M

M
A
R
Y

A
N
D

C
O
N
C
E
P
T

M
A
P

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 689

Polymorphism plays a significant role in the implementation and execution of methods
inherited from the Object class, including toString, equals, and clone. The strat-
egy pattern is used extensively in laying out graphical user interfaces.

12.9 Problem Set

Written Exercises

12.1 The move method in the LeftDancer class (see Listing 12-1) contains the
statement super.move() (lines 16, 18, and 20). What would happen if one of
those statements were this.move()?

12.2 Polymorphism is like a ship’s commanding officer yelling, “Battle stations!” Each
member of the crew knows exactly what he should do in response to that
order—and does it. The commander doesn’t need to give each crew member indi-
vidual instructions. Think of three more real-life analogies for polymorphism.

are
 d

et
erm

in
ed

 b
y

is determined by

m
ay be a superclass of

can identify

may be

may be
is also called

is
als

o c
all

ed

has m
ethods overridden by

m
ay be an interface im

plem
ented by

the reference
variable‘s type

the object‘s
actual type

instanceof

an interface

a superclass

the abstract
class

the concrete
class

method names
that can be called

the behavior of
the methods that

are executed

690
C

H
A
P
T
E
R

12
 |
 P

O
LY

M
O
R
P
H
IS

M

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 690

12.3 Write comparator classes that can be used to sort an array of:

a. Robot objects in ascending order by distance from the origin

b. LineItem objects in descending order by unit cost

c. Person objects (see Section 10.1) by role. Persons with the same role should
be ordered by gender, while persons with the same role and gender should be
ordered by decreasing age. (Hint: Use compareTo to compare enumerations.)

12.4 Draw a class diagram for the drawing program example in Section 12.1.3.

12.5 Study the documentation for the specified class. Draw a partial class diagram
of it and its subclasses, showing the most important overridden methods and
additional features of each subclass.

a. becker.robots.Sim

b. java.text.Format

c. java.awt.Component (This is the root of a huge hierarchy. Stop when
your diagram includes about 10 classes, some of which are at least sub-
subclasses of Component.)

d. java.io.Reader (Include a brief description of the functionality each sub-
class adds.)

12.6 Read the documentation for the Box class. What combination of classes does it
replace? Describe what “struts” and “glue” are and how they might be used.

Programming Exercises

12.7 In the dancing robots example, it appears the fundamental difference between
a LeftDancer and a RightDancer is not in how they move but in their
favored direction to turn. Refactor the dancing robots example shown in
Figure 12-3 so that move and pirouette are completely defined in the
abstract class in terms of turn and antiTurn. These last two methods are
abstract and must be overridden in both LeftDancer and RightDancer.

12.8 Investigate the documentation for becker.robots.IPredicate. For each of
the following, write the predicate and a simple robot test program.

a. Write a predicate to identify a Streetlight that is on. Use it to turn off
several streetlights.

b. The City class has a method named setThingCountPredicate. If
showThingCounts is set to true, the number of things on each intersec-
tion that meet the predicate’s criteria will be shown. The default counts the
number of things that can be moved by a robot. Change it to show the total
of all things, except robots.

691
12

.9
 P

R
O
B
LE

M
S

E
T

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 691

c. Extend Robot to include a query, northIsBlocked, which returns true if
the north exit to the intersection is blocked by a Thing such as a Wall. The
query will use isBesideThing and a predicate that you write. The robot
should not turn while executing this query.

d. Extend Robot to include a query, dirIsBlocked(intƒdir). It is similar
to northIsBlocked in part (c), but is not restricted to a single direction.
The predicate will need an instance variable to remember the direction. The
robot should not turn while executing this query.

12.9 Consider a family of robots that all have a doMyThing method. When a baby
robot does its thing, it moves in a random direction with a random speed.
Parent robots do their thing by moving and automatically picking up all the
things found on their new intersection. Grandparent robots do their thing by
moving at one-third the speed of a normal robot.

a. Implement the robot family by extending RobotSE three times. Write a
main method containing an array of family members. Also scatter a number
of Thing objects around. Make each robot do its thing 10 times. (Hint: You
will need to introduce an abstract class.)

b. Implement the robot family by writing FamilyMemberBot. It extends
RobotSE to use an instance of IMoveStrategy. Write the interface
IMoveStrategy and three classes that implement it. Write a main method
containing an array of FamilyMemberBots. Also scatter a number of
Thing objects around. Make each robot do its thing five times. Change each
robot to use a different move strategy, and then move each robot five more
times. (Hint: The method in IMoveStrategy will take an instance of
FamilyMemberBot, named bot, as a parameter and could contain method
calls like bot.move()).

12.10 Some courses assign letter grades, whereas other courses assign a percentage
between 0 and 100. Still others assign a pass/fail grade.

Write an interface named Grade. The toPercent method returns the grade as
an integer percentage between 0 and 100 percent. The toString method
prints the grade in its “native” format (a percentage, a letter grade, or either
“Pass” or “Fail”). The isPass method returns true for a passing grade,
false otherwise. The includeInAverage returns true for letter and
numeric grades, but false for pass/fail grades.

Write three classes that implement Grade: LetterGrade, PercentageGrade,
and PassFailGrade. Write a main method that fills an array with grades. For
each grade, print on one line the native format, “Pass” or “Fail” (as appropri-
ate), and the percentage (if it can be included in an average). After the list of
grades, print the average grade as a percentage.

Use your school’s mapping between letter grades and numeric grades, if it has
one. Otherwise, make up something like A+ is 95%, A is 90%, etc.

692
C

H
A
P
T
E
R

12
 |
 P

O
LY

M
O
R
P
H
IS

M

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 692

12.11 Write a main method that displays a JPanel inside a JFrame to arrange com-
ponents as follows.

a. Use a GridLayout to arrange JCheckBox and JSlider components as
shown in Figure 12-23a.

b. Use a combination of BorderLayout, BoxLayout, and FlowLayout to
arrange JRadioButton, JButton, and JTextArea components as shown
in Figure 12-23b. The text field will have no size unless you specify the rows
and columns when it is created.

c. Approximate (b) as closely as you can using only BoxLayout and
FlowLayout. You may find calling setAlignmentY(0.0F) on one of the
panels useful.

d. Approximate (b) as closely as you can using only GridBagLayout and
FlowLayout. You will need to read the GridBagConstraints class docu-
mentation carefully.

12.12 Finish the program in Listing 12-22 so that it also displays Forfeit and New
Game buttons, as shown in Figure 12-21. Include a main method that displays
HangmanView in a JFrame. You won’t be able to play a game with your pro-
gram, but it should look good.

For an additional challenge, read about the Box class and figure out how to use
it to replace a JPanel organized with a BoxLayout strategy.

12.13 In Section 10.1.5, we discussed various operations on those elements of an
array that satisfy a specified property. For example, calculate the average age of
everyone who is a “Little” or print all the people who are “Bigs.”

Download the Big Brother/Big Sister example from Chapter 10 (ch10/bbbs/).
Add an interface, IInclude, which has a single method,
booleanƒinclude(Personƒp). Add the following methods to
BigBroBigSis.java:

a. intƒcountSatisfy(IIncludeƒinclude) counts those persons who sat-
isfy include.

a) One layout b) Another layout

693
12

.9
 P

R
O
B
LE

M
S

E
T

(figure 12-23)

Possible layouts

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 693

b. doubleƒaverageAge(IIncludeƒinclude) finds the average age of all
those people who satisfy include.

c. voidƒlist(IIncludeƒinclude,ƒPrintWriterƒout) lists to the speci-
fied file all those people who satisfy include.

d. Person[]ƒsubset(IIncludeƒinclude) returns a filled array of all those
people who satisfy include.

Write a main method to test your methods using an instance of IInclude that
specifies female “Bigs.”

Programming Projects

12.14 Implement a simple bank application. The bank will have many accounts, each
with an account number and a balance. A command interpreter will allow cus-
tomers to enter one of the following commands:

➤ dƒxxxƒyyy (deposits the amount xxx to account number yyy).

➤ wƒxxxƒyyy (withdraws the amount xxx from account yyy).

➤ tƒxxxƒyyyƒzzz (withdraws the amount xxx from account yyy and
deposits the same amount in account zzz).

➤ bƒyyy (displays the balance of account yyy).

The bank has two kinds of accounts. A PerUseAccount charges a set fee of
$0.50 for each withdrawal. A MinBalanceAccount charges a fee of $1.00 for
each withdrawal if the balance is less than $1,000. If the balance is $1,000 or
more, no fee is charged.

a. Implement the banking system without using polymorphism or inheritance.
Write a brief document outlining in point form what would have to be done
to add a new kind of bank account to the system.

b. Implement the banking system using an inheritance hierarchy for the
account classes. Take advantage of polymorphism but minimize the use of
casting. Write a brief document outlining in point form what would have to
be done to add a new kind of bank account to the system.

12.15 Implement a simple guessing game in which the user chooses a number that the
program will try to guess. After each guess, the user will answer with either H
(the guess was too high), L (the guess was too low), or C (the guess was correct).
Allow the user to easily change the guessing strategy used by the program at the
beginning of each game. Strategies should include at least two of the following:

a. Guess a random number.

b. Guess a number that is one larger than the previous guess. The first guess
should be the smallest legal number for the game.

c. Guess the smallest legal number. As long as the user responds with L, guess
a number that is 10 larger than the previous guess. When the user says it’s
too large, start guessing a number that is one less than the previous guess.

694
C

H
A
P
T
E
R

12
 |
 P

O
LY

M
O
R
P
H
IS

M

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 694

d. Based on the user’s answers, keep track of the upper and lower limits on the
number that could have been chosen by the user. Each guess should be the
average of these two values. After each guess, update the upper and lower
limits. (This brief description describes how most people search a physical
phonebook: start in the middle and successively eliminate half of the
remaining entries.)

12.16 Extend JComponent to paint shapes on itself. The shapes that it paints and
their locations will depend on which shapes are added to a list the component
maintains. Your shapes should form an inheritance hierarchy with Shape at
the root. Shape should extend Object.

a. Demonstrate your program with a main method that adds a number of rec-
tangles, circles, lines, and stars to your subclass of JComponent.

b. Implement two additional shapes of your choice beyond those required in (a).

c. Enhance your program so that it will paint the shapes it reads from a file.

12.17 Implement a simplified game of Monopoly that has an inheritance hierarchy of
BoardSquare objects. Subclasses must include Property, Railroad, Go, and
IncomeTax. You will also need a Player class and a command interpreter to
play the game.

Think carefully about whether the Player object should react according to the
kind of square it landed on or whether the BoardSquare objects should react
to Players landing on or crossing them.

a. Implement the game with two instances of Player that always ask a user
for what to do.

b. Implement the game to allow between two and six players, each of which
uses a move strategy object to determine how it plays. Provide at least three
different strategies: one that asks the user, another that always buys a prop-
erty if it can, and a third that only buys a property if it has at least $500.
Give the user a choice of strategies for each player when the game begins.

12.18 ACME Inc. has a standing order for 50 widgets each week from XYZ Inc. The
agreement is that ACME sends the widgets each Friday and XYZ will send a
check to pay for them that same day. If both live up to their agreement, they
both profit. On the other hand, XYZ might send a fraudulent check, hoping to
receive goods for free; or ACME might not send the goods, hoping to receive
unearned payment.

We’ll say either company “cooperates” if it abides by its side of the agreement.
If it does not, we’ll say the company “defects.” The payoff can then be repre-
sented with Table 12-2.

695
12

.9
 P

R
O
B
LE

M
S

E
T

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 695

If both companies want to maximize their profit, what should their strategies
be? Cooperate all of the time? Cooperate most of the time but defect occasion-
ally? Cooperate as much as the other company cooperates?

First, develop three strategies that implement the following interface. They
might be as simple as always cooperating, cooperating with the same probabil-
ity that the other player has cooperated in the past, repeating the other player’s
last decision, or always defecting.

publicƒinterfaceƒICommerceStrategy
{ƒpublicƒstaticƒfinalƒintƒDEFECTƒ=ƒ0;
ƒƒpublicƒstaticƒfinalƒintƒCOOPERATEƒ=ƒ1;

ƒƒ/**ƒDecide whether to cooperate with the other player, given the other's history of
ƒƒ*ƒƒcooperating with this player.
ƒƒ*ƒƒ@param other ƒƒThe decisions made by the other player in previous turns. Each
ƒƒ*ƒƒƒƒƒƒƒƒƒƒ ƒƒelement of the array is one of {DEFECT, COOPERATE}.
ƒƒ*ƒƒ@param numTurns The number of turns made (other is partially filled).
ƒƒ*ƒƒ@return one of {DEFECT, COOPERATE} */
ƒƒpublicƒintƒgetDecision(int[]ƒother,ƒintƒnumTurns);
}

Second, develop a program that plays each strategy against all the other strate-
gies, including a copy of itself. Print the cumulative score for each strategy to
determine the best one. Assume that the players do not know how many turns
there will be. (Does it change your strategy if you know this is your last turn?)

ACME’s Action XYZ’s Action Value to ACME Value to XYZ

Cooperate Cooperate 3 3

Cooperate Defect -2 5

Defect Cooperate 5 -2

Defect Defect 0 0

696
C

H
A
P
T
E
R

12
 |
 P

O
LY

M
O
R
P
H
IS

M

(table 12-2)

Company actions

12 Chapter C5743 40143.ps 11/30/06 1:16 PM Page 696

