
Chapter Objectives

After studying this chapter, you should be able to:

➤ Store data in an array, access a single element, process all elements, search for a
particular element, and put the elements in order.

➤ Declare, allocate, and initialize an array.

➤ Handle changing numbers of elements in an array, including inserting a new ele-
ment and deleting an existing one.

➤ Enlarge or shrink the size of an array.

➤ Manipulate data stored in a multi-dimensional array.

We often work with lists in our daily lives: grocery lists, to-do lists, lists of books
needed for a particular course, the invitation list for our next party, and so on. To be
useful, computers must also work with lists: a list of the Thing objects in a City, a list
of concert tickets, or a list of bank accounts, to identify just a few.

There are several ways to implement lists in Java. One of the most fundamental
approaches is with an array, a kind of variable. Once a list is stored in the array we can
do many things: tick off the third item in our to-do list, print the entire list of books for
a course, search our list of invitations to verify that it includes James Gosling, or sort
the list alphabetically.

In Section 8.5, we studied classes in the Java library that are similar to arrays in that
they store a collection of objects. Some of these, such as ArrayList, are thinly dis-
guised arrays. Others, such as HashMap, provide more sophisticated ways to find
objects in the collection. But underneath it all, many of these classes use an array.

Chapter 10 Arrays

519

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 519

10.1 Using Arrays

Big Brothers/Big Sisters is a charitable association that matches men and women with
boys and girls between the ages of 6 and 16 who could benefit from an older friend and
role model. In many cases the boys and girls are missing a parent due to death or
divorce and don’t have many positive role models in their lives.

Obviously, an association like Big Brothers/Big Sisters keeps lists. One of the most cru-
cial is the list of “bigs” (the adults) and “littles” (the girls and boys) participating in the
association. In this chapter we will consider a computer program that maintains a list
of Person objects (see Figure 10-1) in an array. An array is a kind of variable that can
store many items, such as the items in a list. We will learn how to print the entire list of
people or just the people that meet certain qualifications, such as being a six-year-old
girl. We will learn how to search the list for a specific person and learn to find the per-
son that meets a maximum or minimum criterion (such as the oldest or youngest). Of
course, all these techniques will apply to lists of other kinds of objects as well.

The simplified version of Person, shown in Figure 10-1, uses two enumerations:
Gender and Role. The first enumeration provides the values MALE and FEMALE; the
Role enumeration provides the values BIG to represent an adult participant and LITTLE
to represent a young person. The pairWith command will pair this person with the per-
son, p, specified as a parameter. It does this by setting the pairName appropriately in
both objects.

Throughout this section, we will assume that we have an array named persons con-
taining a list of Person objects. In Section 10.2, we will learn how to create such a
variable and fill it with data.

Person

-String name
-DateTime birthdate
-Gender gender
-Role role
-String pairName

+Person(String name,
DateTime bDay,
Gender gender, Role role)

+Person(Scanner in)
+int getAge()
+Gender getGender()
+String getName()
+String getPairName()
+Role getRole()
+boolean isPaired()
+void pairWith(Person p)

520
C

H
A
P
T
E
R

10
 |
 A

R
R
A
Y
S

KEY IDEA

See www.bbbsc.ca or
www.bbbsa.org for
more information on
Big Brothers/
Big Sisters.

KEY IDEA

There are many
algorithms that work
with lists of things.

(figure 10-1)

Class diagram for Person

LOOKING BACK

Enumerations are new
in Java 1.5 and are
discussed in
Section 7.3.4.

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 520

10.1.1 Visualizing an Array

An object diagram for an array will require showing many Person objects. The
diagram will become quite large if we use our usual format for each Person object
(see Figure 10-2). To avoid this problem, we will abbreviate each person object in
the diagram as shown in Figure 10-3.

In both diagrams, the box labeled aPerson is a variable that refers to an object—the
round-cornered box labeled Person.

So, what does an array look like? Figure 10-4 shows a visualization of an array of
Person objects. The reference variable persons refers to an array object. The array
object refers to many Person objects. Each reference, called an element of the array, is
numbered beginning with zero. This number is called the index.

Roydyn, 1993/5/25, M, L

Kala, 1992/2/16, F, L

Ali, 1985/7/12, M, B

Ken, 1997/8/7, M, L

Beth, 1993/8/27, F, L

Kathleen, 1979/5/4, F, B

Steve, 1968/12/24, M, B

Person[]
length 8

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

persons

Zaki, 1980/9/2, F, B

aPerson Steve, 1968/12/24, M, B

Person

name: Steve

birthdate: 1968/12/24

 gender: MALE

role: BIG

pairName:

aPerson

521
10

.1
U

S
IN

G
A

R
R
A
Y
S

LOOKING BACK

Object diagrams were
first discussed in

Chapter 1. References
were discussed in

Section 8.2.

(figure 10-2)

Object diagram showing a

variable referring to a

Person object

(figure 10-3)

Abbreviated object

diagram

(figure 10-4)

Visualizing an array of

Person objects

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 521

Notice that an array is illustrated almost exactly like other kinds of objects. Similarities
include a variable, such as persons, that refers to the array object just as the variable
karel referred to a Robot object in earlier chapters. An array object contains a public
final instance variable named length, but has no methods. length stores the number
of elements in the array.

The crucial difference between arrays and objects is that the array has instance vari-
ables that are accessed with square brackets and a number instead of a name. This is
illustrated in Figure 10-4 with variables named [0], [1], and so on. The numbering
always starts at zero. This language rule often causes beginning programmers grief
because most people naturally begin numbering with one. Furthermore, the indices run
from zero to one less than the number stored in length. For example, in Figure 10-4,
length is 8 but the indices run from 0 to 7.

The fact that the elements in the array are numbered gives them an order. It makes
sense to speak of the first element (the element numbered 0), the second element, and
the last element.

10.1.2 Accessing One Array Element

Accessing a specific element in an array is as easy as accessing a normal variable—
except that the index of the desired element must also be specified. If we had a simple
variable named aPerson we could print the name with the following line of code:

System.out.println(aPerson.getName());

Printing the name of the first person in our array is almost as easy. Instead of only nam-
ing the variable, we name the array and the position of the element we want:

System.out.println(persons[0].getName());

The index of the desired element is given by appending square brackets to the name of
the array. The index appears between the brackets. You may use the result in exactly
the same ways that you use a variable of the same type.

Here is another code fragment that shows the persons array in use. In each case,
persons is followed by the index of a specific element in the array.

1 // Check if Kathleen (see Figure 10-4) is a "Big"

2 ifƒ(persons[3].getRole()ƒ==ƒRole.BIG)
3 {ƒSystem.out.println(persons[3].getName()ƒ+ƒ" is a Big.");

ƒ4 }

522
C

H
A
P
T
E
R

10
 |
 A

R
R
A
Y
S

KEY IDEA

Elements in an array
are numbered
beginning with zero.

KEY IDEA

Each element has an
index giving its
position in the array.

KEY IDEA

Arrays are indexed
with square brackets
and an integer
expression.

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 522

It is also possible to assign a reference from the array to a regular variable. For exam-
ple, the previous code fragment could have been written like this:

1 Personƒkathy;
2 // Check if Kathleen (see Figure 10-4) is a "Big"

3 kathyƒ=ƒpersons[3];
4 ifƒ(kathy.getRole()ƒ==ƒRole.BIG)
5 {ƒSystem.out.println(kathy.getName()ƒ+ƒ" is a Big.");

6 }

The effect of the reference assignment in line 3 is just like assigning references between
non-array variables and is traced in Figure 10-5. Assigning a reference from an array to
an appropriately named temporary variable can make code much more understandable.

References stored in an array may also be passed as arguments. For example, Kathleen and
Beth could be paired as Big and Little Sisters with the following sequence of statements:

// Pair Kathleen and Beth
Personƒkathyƒ=ƒpersons[3];
Personƒbethƒ=ƒpersons[2];
kathy.pairWith(beth);

Ken, 1997/8/7, M, L

Beth, 1993/8/27, F, L

Kathleen, 1979/5/4, F, B

Steve, 1968/12/24, M, BPerson[]
length 4

[0]

[1]

[2]

[3]

persons

Person kathy;

Ken, 1997/8/7, M, L

Beth, 1993/8/27, F, L

Kathleen, 1979/5/4, F, B

Steve, 1968/12/24, M, BPerson[]
length 4

[0]

[1]

[2]

[3]

persons

kathy = persons[3];

kathy

kathy

523
10

.1
U

S
IN

G
A

R
R
A
Y
S

KEY IDEA

An element in an
array can be assigned

to another variable.

(figure 10-5)

Tracing a reference

assignment using an array

and a non-array variable

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 523

However, because elements of an array can be used just like a regular variable, we
could also pair Kathleen and Beth this way:

// Pair Kathleen and Beth
persons[3].pairWith(persons[2]);

Finally, we can also assign a reference to an array element. For example, suppose
Kathleen is replaced by her friend Claire. The following code constructs an object to
represent Claire and then replaces the reference to Kathleen’s object with a reference to
Claire’s object.

Personƒcƒ=ƒnewƒPerson("Claire",ƒnewƒDateTime(1981,4,14),
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒGender.FEMALE,ƒRole.BIG);
persons[3]ƒ=ƒc;

This code fragment is traced in Figure 10-6.

The object modeling Kathleen will be garbage collected unless another variable is ref-
erencing it.

Ken, 1997/8/7, M, L

Beth, 1993/8/27, F, L

Kathleen, 1979/5/4, F, B

Steve, 1968/12/24, M, BPerson[]
length 4

[0]

[1]

[2]

[3]

Claire, 1981/4/14, F, B

persons

Person c = new Person(...);

c

Ken, 1997/8/7, M, L

Beth, 1993/8/27, F, L

Kathleen, 1979/5/4, F, B

Steve, 1968/12/24, M, BPerson[]
length 4

[0]

[1]

[2]

[3]

Claire, 1981/4/14, F, B

persons

persons[3] = c;

c

524
C

H
A
P
T
E
R

10
 |
 A

R
R
A
Y
S

KEY IDEA

The golden rule for
arrays: Do unto an
array element as you
would do unto a
variable of the
same type.

(figure 10-6)

Tracing the assignment of

a reference into an array

element

LOOKING BACK

When an object has
no references to it,
the resources it uses
are recycled. See
Section 8.2.3.

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 524

10.1.3 Swapping Array Elements

We can easily exchange, or swap, two elements in an array. For example, suppose we
wanted to switch the places of Ken and Beth within the array. A temporary variable is
needed to store a reference to one of the elements while the swap is taking place. A
method to perform a swap follows. It takes two arguments, the indices of the two ele-
ments to swap. Note that we are now assuming that persons is an instance variable.

classƒBigBroBigSisƒextendsƒObject
{ƒ...ƒpersonsƒ...

/** Swap the person object at index a with the object at index b. */
ƒƒpublicƒvoidƒswap(intƒa,ƒintƒb)
ƒƒ{ƒPersonƒtempƒ=ƒthis.persons[a];
ƒƒƒƒthis.persons[a]ƒ=ƒthis.persons[b];
ƒƒƒƒthis.persons[b]ƒ=ƒtemp;
ƒƒ}
}

After the swap method finishes executing, the temporary variable temp will cease to
exist. The object it referenced, however, is still referenced by one element in the array
and will not be garbage collected.

Figure 10-7 traces the execution of swap(1,ƒ2).

525
10

.1
U

S
IN

G
A

R
R
A
Y
S

ch10/bbbs/

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 525

Ken, 1997/8/7, M, L

Beth, 1993/8/27, F, L

Kathleen, 1979/5/4, F, B

Steve, 1968/12/24, M, BPerson[]
length 4

[0]

[1]

[2]

[3]

persons

 { Person temp = this.persons[a];

temp

Ken, 1997/8/7, M, L

Beth, 1993/8/27, F, L

Kathleen, 1979/5/4, F, B

Steve, 1968/12/24, M, BPerson[]
length 4

[0]

[1]

[2]

[3]

persons

this.persons[b] = temp;

temp

Ken, 1997/8/7, M, L

Beth, 1993/8/27, F, L

Kathleen, 1979/5/4, F, B

Steve, 1968/12/24, M, BPerson[]
length 4

[0]

[1]

[2]

[3]

persons

this.persons[a] = this.persons[b];

temp

Ken, 1997/8/7, M, L

Beth, 1993/8/27, F, L

Kathleen, 1979/5/4, F, B

Steve, 1968/12/24, M, BPerson[]
length 4

[0]

[1]

[2]

[3]

persons

// After the swap method finishes

526
C

H
A
P
T
E
R

10
 |
 A

R
R
A
Y
S

(figure 10-7)

Tracing swap(1,ƒ2); the

parameter a has the value

1 and b has the value 2

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 526

10.1.4 Processing All the Elements in an Array

Accessing an element of an array using a number may not seem particularly helpful. We
could, after all, simply declare many variables that just have a number in each name:

Personƒperson00;
Personƒperson01;
Personƒperson02;

But consider printing the name of each person in the list. Without an array, we would
need statements for each named variable:

System.out.println(person00.getName());
System.out.println(person01.getName());
System.out.println(person02.getName());
ƒƒƒ…

If the list contained 1,000 people, the method to print their names would have about
1,000 lines. What a pain!

Fortunately, an array’s index may be a variable—or any other expression that evaluates
to an integer. This is where the power of arrays really becomes apparent. By putting the
println statement inside a loop that increments a variable index, we can print the
entire array with only three lines of code—no matter how many elements are in it.

// Print the the name of every person in the array.
forƒ(intƒiƒ=ƒ0;ƒiƒ<ƒthis.persons.length;ƒi++)
{ƒSystem.out.println(this.persons[i].getName());
}

One item of note in this code fragment is the test in the for loop. The length of an
array can always be found with the array’s public final instance variable, length. If
the array is as illustrated in Figure 10-4, this.persons.length will return 8, the
number of elements in the array. The index, i, takes values starting with 0 and ending
with 7, one less than the array’s length. The length of the array is 8 but the index of the
last element is one less, 7. This is surely one of the most confusing aspects of arrays for
beginning programmers.

So far we have encountered three different mechanisms to find the number of elements
in a collection. Arrays use the public instance variable, length. The number of char-
acters in a string is found with a method, length(). Finally, Java’s collection classes
such as ArrayList and HashMap also use a method to find the number of elements,
but it has a different name, size().

Another task that uses a loop to access each element in turn is to calculate the average
age of the people in the array. For this task, we will use a variable to accumulate the
ages while we loop through the array. After we have added all the ages, we’ll divide by
the length of the array to find the average age.

527
10

.1
U

S
IN

G
A

R
R
A
Y
S

KEY IDEA

Arrays may be
indexed with

variables.

Process All Elements

KEY IDEA

The number of
elements in an array

can be found with
.length.

KEY IDEA

The last index is one
less than the length

of the array.

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 527

/** Calculate the average age of persons in the array. */
publicƒdoubleƒcalcAverageAge()
{ƒintƒsumAgesƒ=ƒ0;
ƒƒforƒ(intƒiƒ=ƒ0;ƒiƒ<ƒthis.persons.length;ƒi++)
ƒƒ{ƒPersonƒpƒ=ƒthis.persons[i];
ƒƒƒƒsumAgesƒ=ƒsumAgesƒ+ƒp.getAge();
ƒƒ}
ƒƒreturnƒ(double)sumAges/this.persons.length;
}

The variable sumAges has the role of a gatherer: It gathers all the individual ages
together. That value is then used to find the average age.

The loop controlling the index, i, is exactly the same in calcAverageAge as it was in
the example to print all the names. This looping idiom—starting the index at 0 and
incrementing by one as long as it is less than the length of the array—is extremely com-
mon when using arrays. Using it should become an automatic response for every pro-
grammer confronted with processing all the elements in an array.

Using the foreach Loop

You may remember that processing each element was also a common activity when
using the collection classes, such as ArrayList and HashSet. In that situation, we
used the foreach loop introduced with Java 1.5. The foreach loop also works with
arrays. The following loop is equivalent to the one used in calcAverageAge, shown
earlier.

forƒ(Personƒpƒ:ƒthis.persons)
{ƒsumAgesƒ=ƒsumAgesƒ+ƒp.getAge();
}

The foreach loop is a generalized loop designed for use with unordered data structures
such as maps and trees, for which asking for element n makes no sense. Hence, a foreach
loop has no index. Instead, one element from the collection is provided for each iteration
of the loop until all of the elements have been processed.

Programmers should be familiar with both looping styles. To emphasize this, we’ll
alternate between the two.

10.1.5 Processing Matching Elements

The method just written, calcAverageAge(), does not seem nearly as useful as a
method to find the average age of only the littles or only the bigs. In the previous exam-
ple, we added the age of every element in the array. To find the average age of only the

528
C

H
A
P
T
E
R

10
 |
 A

R
R
A
Y
S

ch10/bbbs/

Process All Elements

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 528

littles, we want to include the ages only if the person is, in fact, a little. This logic is
shown in the following pseudocode:

forƒeach person in the array
{ƒifƒ(the person is a little)
ƒƒ{ƒinclude this person in the average
ƒƒ}
}
returnƒaverage

By adding the if statement inside the loop, we restrict its effects to only those elements
that match the test. We process the matching elements. Notice that this pattern is very
similar to the Process All Elements pattern.

This pseudocode translates to Java as follows:

/** Find the average age of the "littles". */
publicƒdoubleƒgetAverageLittleAge()
{ƒintƒsumAgesƒ=ƒ0;
ƒƒintƒnumLittlesƒ=ƒ0;
ƒƒforƒ(Personƒpƒ:ƒthis.persons)
ƒƒ{ƒifƒ(p.getRole()ƒ==ƒRole.LITTLE)
ƒƒƒƒ{ƒsumAgesƒ=ƒsumAgesƒ+ƒp.getAge();
ƒƒƒƒƒƒnumLittlesƒ=ƒnumLittlesƒ+ƒ1;
ƒƒƒƒ}
ƒƒ}
ƒƒreturnƒ(double)ƒsumAges/numLittles;
}

Of course, by changing the test in the if statement, we change which objects we
process. By changing the body of the if statement, we change how they are processed.
For example, the following code fragment prints all the “bigs” who have not been
paired with a “little.”

// Print the names of unpaired "bigs"
forƒ(intƒiƒ=ƒ0;ƒiƒ<ƒthis.persons.length;ƒi++)
{ƒPersonƒpƒ=ƒthis.persons[i];
ƒƒifƒ(p.getRole()ƒ==ƒPerson.BIGƒ&&ƒ!p.isPaired())
ƒƒ{ƒSystem.out.println(p.getName());
ƒƒ}
}

10.1.6 Searching for a Specified Element

In one of our first examples we paired Beth, the person at index 2, with Kathleen, the
person at index 3. But when we’ve decided to pair Beth and Kathleen, how do we find
their positions in the array? We search for them.

529
10

.1
U

S
IN

G
A

R
R
A
Y
S

Process Matching
Elements

ch10/bbbs/

LOOKING AHEAD

We’ll learn how to
generalize these

methods with
interfaces and

polymorphism in
Chapter 12.

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 529

Searching involves using some identifying information—such as a name, telephone number,
or government identification number—and finding the corresponding object in the array.
The identifying information is often called a key. If each key is unique, then at most one
object in the array will match the key. Government identification numbers usually identify
a unique person. On the other hand, names and telephone numbers may match several dif-
ferent people. In that case, a search generally returns the first object that matches.

In most cases we don’t know that our search will be successful. It might be that no
object matches the key. Therefore, we need a way to indicate failure. This is usually
done by returning a special value such as null or –1. We can use null when the
search method returns the object that was found and –1 when the search method
returns the array index where the object was found. We use null and –1 for this role
because null is never a legal reference to an object and –1 is never a legal array index.

The easiest way to write a search method is a variation of the Process Matching
Elements pattern—except that the “processing” is to exit the loop and return the
answer. Suppose we are looking for a person using their name as a key. The logic is
shown in the following pseudocode:

forƒeach person in the array
{ƒifƒ(the person’s name matches the key)
ƒƒ{ƒexit the loop and return the person
ƒƒ}
}
returnƒnull

We can exit the loop when we find the right person with the return statement. If we
examine all of the people in the array and do not find one matching the key, the code
will exit the loop at the bottom and return null, indicating the search failed.

In Java, this can be implemented as the method shown in Listing 10-1.

530
C

H
A
P
T
E
R

10
 |
 A

R
R
A
Y
S

Linear Search

Linear Search

Listing 10-1: Searching an array

1 /** Search for the first person object matching the given name.

2 * @param name The name of the person to find (the key).

3 * @return The first matching person object; null if there is none. */

4 publicƒPersonƒsearch(Stringƒname)
5 {ƒforƒ(intƒiƒ=ƒ0;ƒiƒ<ƒthis.persons.length;ƒi++)
6 ƒƒ{ƒPersonƒpƒ=ƒthis.persons[i];
7 ƒƒƒƒifƒ(p.getName().equalsIgnoreCase(name))
8 ƒƒƒƒ{ƒreturnƒp;ƒƒƒƒ// Success. Exit the loop and return the person found.

9 ƒƒƒƒ}
10 ƒƒ}
11 ƒƒreturnƒnull;ƒƒƒƒƒ// Failure.

12 }

ch10/bbbs/

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 530

The search method can also be written without the temporary variable p, as follows:

publicƒPersonƒsearch(Stringƒname)
{ƒforƒ(intƒiƒ=ƒ0;ƒiƒ<ƒthis.persons.length;ƒi++)
ƒƒ{ƒifƒ(this.persons[i].getName().equalsIgnoreCase(name))
ƒƒƒƒ{ƒreturnƒthis.persons[i];ƒƒƒƒƒƒƒƒƒƒ// Search succeeded.
ƒƒƒƒ}
ƒƒ}
ƒƒreturnƒnull;ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ// Search failed.
}

We can use the search method to pair Kathleen and Beth as follows:

StringƒbigNameƒ=ƒPrompt.forString("Big's Name: ");
Personƒbigƒ=ƒthis.search(bigName);
StringƒlittleNameƒ=ƒPrompt.forString("Little's Name: ");
Personƒlittleƒ=ƒthis.search(littleName);
big.pairWith(little);ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ// Dangerous code!

The last line is marked as dangerous code because one or both of the searches may
have failed, in which case big or little will contain the value null. Then a
NullPointerException will be generated when the last line executes. The outcome
of a search should always be verified and failure handled. The following is better code
because it checks that the searches were successful.

StringƒbigNameƒ=ƒPrompt.forString("Big's Name: ");
Personƒbigƒ=ƒthis.search(bigName);
whileƒ(bigƒ==ƒnull)
{ƒSystem.out.println(bigNameƒ+ƒ" not found.");
ƒƒbigNameƒ=ƒPrompt.forString("Big's Name: ");
ƒƒbigƒ=ƒthis.search(bigName);
}

// Repeat the above to find the little.

big.pairWith(little);ƒƒ// Safe because both big and little have been found.

Another Approach to Searching

Many people think it is a bad idea to exit a loop early. They think that a line such as
the following is like a contract between the programmer and the reader.

forƒ(intƒiƒ=ƒ0;ƒiƒ<ƒthis.persons.length;ƒi++)

The contract says this code will execute one time for every person in the array. Returning
from the middle of the loop, like the search in Listing 10-1, breaks the contract.

531
10

.1
U

S
IN

G
A

R
R
A
Y
S

LOOKING BACK

The Prompt class
was discussed in

Section 9.4.2.

KEY IDEA

Always confirm a
search was successful

before proceeding.

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 531

A search algorithm that respects this view uses a while loop, which does not imply
that every element in the array will be visited. The core idea is to repeatedly increment
an index variable so that elements of the array are examined in turn. This is Step 1 of
the Four-Step Process for constructing a while loop. The loop stops (Step 2) when
either the end of the array is reached or the desired element is found, which ever comes
first. Therefore, the loop continues as long as we have not reached the end of the array
and we have not found the desired element. The loop is assembled (Step 3) with the
results of Steps 1 and 2. Finally, after the loop (Step 4), we need to determine the
answer and return it.

The logic is shown in the following pseudocode:

whileƒ(not at the end of the array and matching object not found)
{ƒincrement index to examine the next object
}
ifƒ(at the end of the array)
{ƒthe search failed; return null
}ƒelse
{ƒthe search succeeded; return the object
}

Making this pseudocode concrete to search for a person results in Listing 10-2.

532
C

H
A
P
T
E
R

10
 |
 A

R
R
A
Y
S

LOOKING BACK

The Four-Step Process
for constructing a
loop is discussed in
Section 5.1.2.

Linear Search

ch10/bbbs/

Listing 10-2: Another approach to searching an array

1 /** Search for the first person object matching the given name.

2 * @param name The name of the person to find (the key). */

3 publicƒPersonƒsearchAlt(Stringƒname)
4 {ƒintƒiƒ=ƒ0;
5 ƒƒwhileƒ(iƒ<ƒthis.persons.lengthƒ&&ƒ
6 ƒƒƒƒƒƒƒƒƒ!this.persons[i].getName().equalsIgnoreCase(name))
7 ƒƒ{ƒi++;
8 ƒƒ}
9

10 ƒƒifƒ(iƒ==ƒthis.persons.length)
11 ƒƒ{ƒreturnƒnull;ƒƒƒƒƒƒƒƒƒƒƒƒƒ// Failure: got to the end without finding it.

12 ƒƒ}ƒelseƒ
13 ƒƒ{ƒreturnƒthis.persons[i];ƒƒ// Success.

14 ƒƒ}
15 }

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 532

10.1.7 Finding an Extreme Element

An extreme element has the most of something or the least of something. It might be
the person with the most age (oldest person) or the least age (youngest person). In
other contexts, extreme elements might be the employee with the highest salary, the
robot with the most things, the stock with the highest price/earnings ratio, or the name
appearing first in dictionary ordering.

The strategy is to step through the array using the Process All Elements pattern. As we
go, we’ll remember the element that best meets the criteria so far. For each new element
we examine, we’ll ask if it meets the criteria better than the one we’re remembering. If
it does, remember it instead. Expressed in pseudocode, this algorithm is:

remember the first element as the best seen so far
forƒeach remaining element in the array
{ƒifƒ(the current element is better than the best seen so far)
ƒƒ{ƒremember the current element as the best seen so far
ƒƒ}
}
return the best seen so far

Listing 10-3 applies this algorithm to the problem of finding the oldest person in the
array. It begins, in line 3, by remembering the first person in the array (at index 0) as the
oldest we’ve seen so far. This must be true, because we haven’t looked at anyone else.

In line 5, we start looking at the rest of the people in the array. Lines 6–8 check if the
current person matches the criteria better than oldestSoFar. If it does, the old value of
oldestSoFar is replaced with currentPerson. When the loop ends, oldestSoFar

533
10

.1
U

S
IN

G
A

R
R
A
Y
S

ch10/bbbs/

will contain the oldest person in the entire list.

Listing 10-3: An example of finding an extreme element: the oldest person in the array

1 /** Find oldest person in the list. (Assumes there is at least one person in the array.) */

2 publicƒPersonƒfindOldestPerson()

3 {ƒPersonƒoldestSoFarƒ=ƒthis.persons[0];

4
5 ƒƒforƒ(PersonƒcurrentPersonƒ:ƒthis.persons)

6 ƒƒ{ƒifƒ(currentPerson.getAge()ƒ>ƒoldestSoFar.getAge())

7 ƒƒƒƒ{ƒoldestSoFarƒ=ƒcurrentPerson;

8 ƒƒƒƒ}

9 ƒƒ}

10 ƒƒreturnƒoldestSoFar;

Find an Extreme

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 533

11 }

What happens if two elements in the array meet the criteria equally well? What if two
people have the same age? The algorithm given here will return the first one found and
ignore anyone occurring later in the array who happens to be the same age. Changing
the > in line 6 to >= results in finding the oldest person who appears last.

Listing 10-3 returns the extreme element. Sometimes it is desirable to return the index
of that element instead. Implementing such a method requires replacing the foreach
loop with a regular for loop which makes the index explicit.

Java allows an empty array (an array with length zero), as shown in Figure 10-8.

The code in Listing 10-3 will fail on such an array with an
ArrayIndexOutOfBoundsException at line 3. Programmers should always be
aware of such a possibility and decide how to handle it. Options include the following:

➤ Document that calling the method with an empty array is an error. Check for
that situation and throw an exception, if required.

➤ Document the value the method will return if the array is empty. This would
typically be null if the method returns the extreme element and –1 if it
returns the index of the extreme element. Of course, a check must be made for
empty arrays so the correct value can be returned.

10.1.8 Sorting an Array

Collections of things are often easier to work with if they are sorted. Card players usu-
ally sort the collection of playing cards in their hands. A collection of words in a dic-
tionary is usually sorted in alphabetical order, as are names in a telephone book. A
collection of banking transactions are sorted by date on the bank statement.

Different algorithms can sort an array. Many of these algorithms have been given
names: Insertion Sort, Selection Sort, QuickSort, HeapSort, ShellSort, MergeSort, and
so on. Selection Sort is one of the easiest sorting algorithms to master. It builds on three
patterns we have already seen: Process All Elements, Find an Extreme, and Swap Two
Elements.

These sorting algorithms vary widely in their efficiency and in their ease of implemen-

Person[]
length 0

persons

534
C

H
A
P
T
E
R

10
 |
 A

R
R
A
Y
S

LOOKING AHEAD

Problem 10.4 makes
the algorithm more
accurate. In
Section 10.3, we will
learn how to return
an array of people
who all meet the
same criteria.

(figure 10-8)

Empty array

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 534

tation. Insertion Sort and Selection Sort are easy to implement but slow to execute.
QuickSort, HeapSort, ShellSort, and MergeSort are all much, much faster for large
arrays but are more difficult to implement. They are typically included in a second year
Computer Science course.

Understanding Selection Sort

Diagrams help us understand how a sort works. For simplicity, our diagrams will use
an array of letters; when the array is sorted, the letters will be in alphabetical order.

The core idea of Selection Sort is to divide the array into two parts, as shown in
Figure 10-9: the part that is already sorted (shown with a dark background) and the
part that isn’t (shown with a white background).

At each step in the algorithm, we extend the sorted portion of the array by one ele-
ment. The next element to add to the sorted portion is the smallest element in the
unsorted portion of the array, D. It goes in the position currently occupied by G. These
two elements are highlighted in Figure 10-10.

The last part of this step is to swap these two elements, thus extending the sorted por-
tion of the array by one element. See Figure 10-11.

These two actions—finding the element that belongs in the next position and swapping
it with the one already there—are performed repeatedly until the entire array is sorted.
The algorithm begins with the sorted portion of the array being empty and the
unsorted portion consuming the entire array. Figure 10-12 shows the entire sorting
operation on a small array.

0 1 2 3 4 5 6
A B C D E G F

0 1 2 3 4 5 6
A B C G E D F

0 1 2 3 4 5 6
A B C G E D F

535
10

.1
U

S
IN

G
A

R
R
A
Y
S

(figure 10-9)

Dividing an array into

two parts

(figure 10-10)

Extending the array

(figure 10-11)

Swapping the two

elements; extending the

sorted part of the array

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 535

Two points in this example are worth elaboration. First, notice that when the element
in the next to last position (index 5) is swapped into position, the last element (index 6)
is automatically placed correctly as well. A moment’s thought will explain why: When
all the elements but the last are in their correct places, the last one must also be in its
correct place because there is no where else for it to be.

Second, when it was time to look for the element to place at index 4, the element just hap-
pened to already be there. In this case, we would not need to perform the swapping step.
We will anyway, however, because the “cure” of testing for this condition for every position
in the array is worse than the “disease” of performing the swap every once in a while.

Coding Selection Sort

Based on this example, we see that two actions are repeated: Find the element that
belongs in the next position and swap it with the one already there. These actions are
performed for each position in the array, in ascending order, except for the last one.
These observations yield the following pseudocode:

forƒeach position in the array except the last
{ƒfind the element that should go in this position
ƒƒswap that element with the element currently there
}

In this case the foreach loop is inappropriate because we will not be examining every
element in the array and because we need the index of the current element.

We can use this algorithm to sort our list of persons, but first we need to decide on the
order we want. Sorted by age? Sorted by name in alphabetical order? Something else?

The initial, unsorted array.

Find the element that belongs at index 0.

Swap elements at 0 and 2, extending sorted part.

Find the element that belongs at index 1.

Swap elements at 1 and 4, extending sorted part.

Find the element that belongs at index 2.

Swap elements at 2 and 6, extending sorted part.

Find the element that belongs at index 3.

Swap elements at 3 and 5, extending sorted part.

Find the element that belongs at index 4.

Swap elements at 4 and 4, extending sorted part.

Find the element that belongs at index 5.

Swap elements at 5 and 6, extending sorted part.

0 1 2 3 4 5 6

F E A G B D C

F E A G B D C

A E F G B D C

A E F G B D C

A B F G E D C

A B F G E D C

A B C G E D F

A B C G E D F

A B C D E G F

A B C D E G F

A B C D E G F

A B C D E G F

A B C D E F G

536
C

H
A
P
T
E
R

10
 |
 A

R
R
A
Y
S

(figure 10-12)

Sorting an array of letters

into alphabetical order

Selection Sort

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 536

In the first example, we will sort the array by name. To do so, we’ll use the compareTo
method in the String class. If we have two String variables, s1 and s2, then
s1.compareTo(s2) returns 0 if the two strings are equal, a negative number if s1
comes before s2 in dictionary order, and a positive number if s1 comes after s2.

Listing 10-4 shows the Selection Sort algorithm coded in Java. Let’s look briefly at the
patterns it uses.

First, the sort method uses a very slight variation of the Process All Elements pattern.
The difference is that it processes all the elements except the last one. As noted earlier, by
the time all the other elements are in their place, the last one must be in its place as well.

Second, the helper method uses a variation of the Find an Extreme pattern. It differs
from the pattern in Section 10.1.7 in two ways:

➤ It finds the extreme in only the unsorted part of the array. We pass the index of
the first element it should consider as an argument.

➤ We are concerned with the position of the extreme element, not the element itself.
So our most-wanted holder variable in findExtreme, indexBestSoFar, stores
the index of the best Person object seen so far rather than a reference to
the object.

Third, the swap helper method is exactly as we saw before.

537
10

.1
U

S
IN

G
A

R
R
A
Y
S

ch10/bbbs/

Listing 10-4: Implementing Selection Sort to sort an array of Person objects by name

1 publicƒclassƒBBBSƒextendsƒObject
2 {ƒ...ƒpersonsƒ...ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ// an array of Person objects

3
4 ƒƒ/** Sort the list of persons in alphabetical order by name. */

5 ƒƒpublicƒvoidƒsort()
6 ƒƒ{ƒforƒ(intƒfirstUnsortedƒ=ƒ0;
7 ƒƒƒƒƒƒƒƒƒƒƒƒƒfirstUnsortedƒ<ƒthis.persons.length-1;ƒ
8 ƒƒƒƒƒƒƒƒƒƒƒƒƒfirstUnsorted++)
9 ƒƒƒƒ{ƒintƒextremeIndexƒ=ƒthis.findExtreme(firstUnsorted);

10 ƒƒƒƒƒƒthis.swap(firstUnsorted,ƒextremeIndex);
11 ƒƒƒƒ}
12 ƒƒ}
13
14 ƒƒ/** Find the extreme element in the unsorted portion of the array.

15 ƒƒ * @param indexToStart The smallest index in the unsorted portion of the array.

16 ƒƒ * @return The index of the extreme element. */

17 ƒƒprivateƒintƒfindExtreme(intƒindexToStart)
18 ƒƒ{ƒintƒindexBestSoFarƒ=ƒindexToStart;
19 ƒƒƒƒStringƒnameBestSoFarƒ=ƒ
20 ƒƒƒƒƒƒƒƒƒƒƒƒthis.persons[indexBestSoFar].getName();

Selection Sort

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 537

Sorting without Helper Methods (optional)

Sorting is performed so frequently that a great deal of effort has been spent to make the
operation as fast as possible. The greatest gains in efficiency have been made by
employing different algorithms. QuickSort and HeapSort are among the best, but are
beyond the scope of this book.

Selection Sort can be made faster by eliminating the helper methods. Normally, eliminat-
ing helper methods just to speed up an algorithm is not a good idea. In this case, however,
it may be justified because the algorithm is still relatively understandable. Listing 10-5
implements sortByAge as a single method. The age comparison is somewhat simpler
than comparing names and so some temporary variables have been eliminated as well.

538
C

H
A
P
T
E
R

10
 |
 A

R
R
A
Y
S

Listing 10-4: Implementing Selection Sort to sort an array of Person objects by name (continued)

21 ƒƒƒƒforƒ(intƒi=indexToStart+1;ƒi<this.persons.length;ƒi++)
22 ƒƒƒƒ{ƒStringƒcurrPersonNameƒ=ƒthis.persons[i].getName();
23 ƒƒƒƒƒƒifƒ(currPersonName.compareTo(nameBestSoFar)ƒ<ƒ0)
24 ƒƒƒƒƒƒ{ƒindexBestSoFarƒ=ƒi;
25 ƒƒƒƒƒƒƒƒnameBestSoFarƒ=ƒthis.persons[i].getName();
26 ƒƒƒƒƒƒ}
27 ƒƒƒƒ}
28 ƒƒƒƒreturnƒindexBestSoFar;
29 ƒƒ}
30
31 ƒƒ/** Swap the elements at indices a and b. */

32 ƒƒprivateƒvoidƒswap(intƒa,ƒintƒb)
33 ƒƒ{ƒPersonƒtempƒ=ƒthis.persons[a];
34 ƒƒƒƒthis.persons[a]ƒ=ƒthis.persons[b];
35 ƒƒƒƒthis.persons[b]ƒ=ƒtemp;
36 ƒƒ}
37 }

LOOKING AHEAD

This code will be
made more flexible
and reusable in
Listing 12.18 in
Section 12.5.

Listing 10-5: Implementing Selection Sort in a single method to sort an array of Person objects

by age

1 publicƒclassƒBigBroBigSisƒextendsƒObject
2 {ƒ...ƒpersonsƒ...ƒƒƒƒƒƒƒƒƒƒ// An array of Person objects.

3
4 ƒƒ/** Sort the persons array in increasing order by age. */

5 ƒƒpublicƒvoidƒsortByAge()
6 ƒƒ{ƒforƒ(intƒfirstUnsorted=0;ƒ

ch10/bbbs/

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 538

Sorting with the Java Library

Sorting an array is a very common activity and so it’s natural that the Java library pro-
vides support for it via the java.util.Arrays class. It provides methods to sort
arrays of all of the primitive types as well as arrays of objects.

The ordering of the primitive types is defined naturally by their values. Not so with
arrays of objects. When sorting an array of Person objects, for example, how does the
library sort know whether to sort by age or name or some other criteria?

The library sorts use two different approaches, both of which are explained in Chapter 12.
One approach depends on the objects being sorted implementing the Comparable inter-
face. This interface specifies a single method, compareTo, that compares two objects and
returns a number indicating which should come first. Classes that implement this interface
include String, DateTime, File, and enumerated types such as Direction. Sorting a
list of strings, for example, can be accomplished with the code in Listing 10-6.

The vast majority of the code, lines 11–19 and 25–28, is concerned with reading the
strings from the user and printing out the sorted list. The actual sorting is accom-
plished by a single line of code calling a method in the Java library (line 22).

539
10

.1
U

S
IN

G
A

R
R
A
Y
S

Listing 10-5: Implementing Selection Sort in a single method to sort an array of Person objects

by age (continued)

7 ƒƒƒƒƒƒƒƒfirstUnsorted<this.persons.length-1;
8 ƒƒƒƒƒƒƒƒfirstUnsorted++)
9 ƒƒƒƒ{ƒ// Find the index of the youngest unsorted person.

10 ƒƒƒƒƒƒintƒextremeIndexƒ=ƒfirstUnsorted;
11 ƒƒƒƒƒƒforƒ(intƒiƒ=ƒfirstUnsortedƒ+ƒ1;ƒ
12 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒiƒ<ƒthis.persons.length;ƒi++)
13 ƒƒƒƒƒƒ{ƒifƒ(this.persons[i].getAge()ƒ<ƒ
14 ƒƒƒƒƒƒƒƒƒƒƒƒthis.persons[extremeIndex].getAge())
15 ƒƒƒƒƒƒƒƒ{ƒextremeIndexƒ=ƒi;
16 ƒƒƒƒƒƒƒƒ}
17 ƒƒƒƒƒƒ}
18
19 ƒƒƒƒƒƒ// Swap the youngest unsorted person with the person at firstUnsorted.

20 ƒƒƒƒƒƒPersonƒtempƒ=ƒthis.persons[extremeIndex];
21 ƒƒƒƒƒƒthis.persons[extremeIndex]ƒ=ƒ
22 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒthis.persons[firstUnsorted];
23 ƒƒƒƒƒƒthis.persons[firstUnsorted]ƒ=ƒtemp;
24 ƒƒƒƒ}
25 ƒƒ}
26 }

Selection Sort

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 539

The second approach to ordering objects is to pass the sort method the list to sort and
an object implementing the Comparator interface. This is the most flexible approach
and is discussed in Chapter 12.

10.1.9 Comparing Arrays and Files

Some beginning programmers have a hard time distinguishing an array from a file.
After all, both store an ordered collection of objects. Both often use algorithms that
process all of the objects in the collection.

540
C

H
A
P
T
E
R

10
 |
 A

R
R
A
Y
S

Listing 10-6: Sorting strings read from the console

1 importƒjava.util.Arrays;
2 importƒjava.util.Scanner;
3
4 /** Sort the strings read from a file.

5 *

6 * @author Byron Weber Becker */

7 publicƒclassƒSort
8 {
9 ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)

10 ƒƒ{ƒ// Get the strings from the user.

11 ƒƒƒƒScannerƒinƒ=ƒnewƒScanner(System.in);
12 ƒƒƒƒSystem.out.print("How many strings: ");

13 ƒƒƒƒintƒnumƒ=ƒin.nextInt();
14 ƒƒƒƒin.nextLine();
15 ƒƒƒƒƒƒƒƒƒƒ
16 ƒƒƒƒString[]ƒstringsƒ=ƒnewƒString[num];
17 ƒƒƒƒforƒ(intƒiƒ=ƒ0;ƒiƒ<ƒnum;ƒi++)
18 ƒƒƒƒ{ƒstrings[i]ƒ=ƒin.nextLine();
19 ƒƒƒƒ}ƒƒƒƒƒ
20 ƒƒƒƒƒ
21 ƒƒƒƒ// Sort the strings.

22 ƒƒƒƒArrays.sort(strings);
23 ƒƒƒƒƒ
24 ƒƒƒƒ// Display the sorted list of strings.

25 ƒƒƒƒSystem.out.println("The sorted strings:");

26 ƒƒƒƒforƒ(intƒiƒ=ƒ0;ƒiƒ<ƒstrings.length;ƒi++)
27 ƒƒƒƒ{ƒSystem.out.println(strings[i]);
28 ƒƒƒƒ}
29 ƒƒ}
30 }

ch10/librarySort/

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 540

So what’s the difference? The core difference is that a file stores the objects on a disk
drive or a related device. An array is stored in the computer’s memory.

One consequence is that accessing an array is much faster than accessing a file. The
disk drive holding your file has moving parts; waiting for them to move makes access-
ing a file slow. Memory, on the other hand, stores the array by arranging electrons in
its chips. Manipulating electrons is much faster.

Files are linear structures. When a file is stored on the disk, all the information is
placed into one long line. It’s processed by reading the first item of information from
the line, then the second, and so on. It’s possible to read an item from the middle of the
line, but you have to know exactly where to start in considerable detail. You need to
know not just that you want the 132nd item, but the exact length of the 131 items that
come before it.

Arrays, on the other hand, support random access naturally. If you want the 132nd

item, use 131 as the index into the array (because arrays are indexed starting at 0).
Random access makes sorting an array easy but sorting a file difficult.

So why do we use files at all? Why not store everything in an array? Because storing
information on a disk drive is much cheaper and because disk drives retain the infor-
mation even when the power is off; memory does not.

Arrays and files are complementary. We often store information in files while we aren’t
working on it. When we begin to use the information, we use a program that loads the
information from the file into an array. After we’re done, usually as one of the last
things a program does, the information is written from the array back to the disk
where it waits until the next time we use it.

10.2 Creating an Array

So far we have assumed that the BBBS class contains an instance variable that is an
array of Person objects. In this section, we’ll see how to create such an array.

Briefly, creating an array has three steps: declaring the variable, allocating the memory,
and initializing each element in the array to a desired value. In some ways, creating an
array is like hosting a dinner party. The declaration states your intent to have an
array—like sending out invitations to your dinner party. When you allocate memory
you decide how many elements your array will have—like counting up the responses to
your invitation and setting that many dinner places at the table. Finally, initialization
puts a value in each element of the array—like seating one of your guests at each place
around your table. These three steps are illustrated in Figure 10-13.

541
10

.2
C

R
E
A
T
IN

G
A
N

A
R
R
A
Y

KEY IDEA

Creating an array has
three steps:
declaration,

allocation, and
initialization.

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 541

10.2.1 Declaration

Declaring an array is like declaring any other reference variable. A type such as
Person or Robot is required, followed by the name of the variable. If the array is an
instance variable, then an access modifier such as private is appropriate.

The only trick is knowing the type. The type for an array of Person objects is
Person[] and the type for an array of Robot objects is Robot[]. Simply add a set of
square brackets after the type of elements the array will hold. You might think of the
brackets as making the type plural. A variable of type Person holds one person. A
variable of type Person[] holds many persons.

personsStep 1: Declare
the array

Person[]
length 8

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

personsStep 2: Allocate space
for the references

Step 3: Initialize each
element of the array

Roydyn, 1993/5/25, M, L

Kala, 1992/2/16, F, L

Ali, 1985/7/12, M, B

Ken, 1997/8/7, M, L

Beth, 1993/8/27, F, L

Kathleen, 1979/5/4, F, B

Steve, 1968/12/24, M, B

Person[]
length 8

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

persons

Zaki, 1980/9/2, F, B

542
C

H
A
P
T
E
R

10
 |
 A

R
R
A
Y
S

(figure 10-13)

Three steps in preparing

an array for use

KEY IDEA

The type of an array is
the same as the type
of each element, but
with [] appended.

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 542

With this background, we can replace the following code:

publicƒclassƒBBBSƒextendsƒObject
{ƒ...ƒpersonsƒ...ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ// An array of Person objects.

shown in the listings in Section 10.1 with the complete declaration:

publicƒclassƒBBBSƒextendsƒObject
{ƒprivateƒPerson[]ƒpersons;ƒƒƒƒƒƒƒƒ// An array of Person objects.

The persons array can only hold Person objects.

10.2.2 Allocation

The declaration of an array does not create the array, but only a place to hold a refer-
ence to an array. See Step 1 in Figure 10-13. We also need to allocate the array object
itself, similar to constructing any other kind of object. See Step 2 in Figure 10-13.

The following code fragment constructs an array object, allocating space for eight ele-
ments. It uses the new keyword followed by the type of the elements the array will
store. In square brackets is the number of elements the array will be able to hold.

this.personsƒ=ƒnewƒPerson[8];

Of course, including a different number in place of the 8 would allocate space for a dif-
ferent number of elements. The 8 in this example can also be replaced with any expres-
sion that evaluates to an integer, including a simple variable or a complex calculation.
This calculation may, for example, be based on information obtained from a user, as
shown in the following code fragment:

publicƒclassƒBBBSƒextendsƒObject
{ƒprivateƒPerson[]ƒpersons;
ƒƒ...

ƒƒprivateƒvoidƒcreateArray()
ƒƒ{ƒScannerƒinƒ=ƒnewƒScanner(System.in);
ƒƒƒƒSystem.out.print("How many persons: ";
ƒƒƒƒintƒnumPersonsƒ=ƒin.nextInt();

ƒƒƒƒthis.personsƒ=ƒnewƒPerson[numPersons];
ƒƒƒƒ...
ƒƒ}
}

The programmer often knows how many elements will be in the array when the pro-
gram is written. In this case, the declaration and the allocation may be combined:

privateƒPerson[]ƒpersonsƒ=ƒnewƒPerson[100];ƒ

543
10

.2
C

R
E
A
T
IN

G
A
N

A
R
R
A
Y

LOOKING AHEAD

In Chapter 12, we
will see that the

persons array can
also hold subclasses

of Person.

KEY IDEA

Use the new keyword
to set aside space for

a specific number of
elements.

KEY IDEA

An array may be
declared and

allocated in one
statement when you

know how many
elements it will hold.

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 543

10.2.3 Initialization

The final step in creating an array is to initialize each element, as illustrated in Step 3
of Figure 10-13. The simplest approach is to call an appropriate constructor for each
element in the array. For example, a small array of Person objects could be initialized
like this:

this.persons[0]ƒ=ƒnewƒPerson("Steve",ƒ"1968/12/24",
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒGender.MALE,ƒRole.BIG);
this.persons[1]ƒ=ƒnewƒPerson("Ken",ƒ"1997/8/7",
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒGender.MALE,ƒRole.LITTLE);
this.persons[2]ƒ=ƒnewƒPerson("Beth",ƒ"1993/8/27",ƒ
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒGender.FEMALE,ƒRole.LITTLE);

This approach works, but is impractical for a large number of elements. Array initial-
ization is often performed by reading information from a file and constructing an
object for each of the file’s records.

The main problem is knowing how many records are in the file. This information is
needed to allocate the correct number of elements for the array.

One approach is to simply count the records. The file is opened and the records are
read, counting each one. When the end of the file is reached, it is closed and then
opened again. The array is allocated using the count just obtained. The entire file is
then read a second time, storing each object in the array.

Listing 10-7 shows the constructor to the BBBS class in lines 14–36. The initialization
of the array takes place in the constructor. The relevant points are:

➤ The array is declared at line 10.

➤ In lines 18–24, the file is opened, every record is read and counted, and then
the file is closed.

➤ In line 27, the array is allocated using the count of the records in the file.

➤ In lines 30–33, the file is again opened and the records read. This time, how-
ever, the objects created with the data are stored in the array at line 32. The
file is closed again in line 34 after all of the records have been read.

544
C

H
A
P
T
E
R

10
 |
 A

R
R
A
Y
S

LOOKING AHEAD

Reading objects from
a file was discussed in
Section 9.2.1.

Listing 10-7: Initializing an array from a file

1 importƒjava.util.Scanner;
2
3 /** A list of the "bigs" and "littles" associated with a Big Brother/Big Sister program.

4 * "Bigs" are the Big Brothers and Big Sisters; "littles" are the Little Brothers and Sisters

5 * they are (potentially) paired with.

6
7 * @author Byron Weber Becker */

ch10/bbbs/

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 544

One disadvantage of reading the file twice is inefficiency. Reading from a file is inher-
ently slow and it would be more efficient to avoid reading the entire file twice.

Another approach is to store the number of records as the first item in the file, as shown
in Figure 10-14. The constructor can simply read this data item and allocate the array.
The records can then be read and stored into the array the first time the file is read.

545
10

.2
C

R
E
A
T
IN

G
A
N

A
R
R
A
Y

Listing 10-7: Initializing an array from a file (continued)

8 publicƒclassƒBigBroBigSisƒextendsƒObject
9 {

10 ƒƒprivateƒPerson[]ƒpersons; // the list of bigs and littles

11
12 ƒƒ/** Construct a new object by reading all the bigs and littles from a file.

13 ƒƒ* @param fileName the name of the file storing the information for bigs and littles */

14 ƒƒpublicƒBigBroBigSis(StringƒfileName)
15 ƒƒ{ƒsuper();
16
17 ƒƒƒƒ// Count the number of Persons in the file.

18 ƒƒƒƒintƒcountƒ=ƒ0;
19 ƒƒƒƒScannerƒinƒ=ƒthis.openFile(fileName);
20 ƒƒƒƒwhileƒ(in.hasNextLine())
21 ƒƒƒƒ{ƒPersonƒpƒ=ƒnewƒPerson(in);
22 ƒƒƒƒƒƒcount++;
23 ƒƒƒƒ}
24 ƒƒƒƒin.close();
25
26 ƒƒƒƒ// Allocate an array to hold each object we read.

27 ƒƒƒƒthis.personsƒ=ƒnewƒPerson[count];
28
29 ƒƒƒƒ// Read the data, storing a reference to each object in the array.

30 ƒƒƒƒinƒ=ƒthis.openFile(fileName);
31 ƒƒƒƒforƒ(intƒiƒ=ƒ0;ƒiƒ<ƒcount;ƒi++)
32 ƒƒƒƒ{ƒthis.persons[i]ƒ=ƒnewƒPerson(in);
33 ƒƒƒƒ}
34 ƒƒƒƒin.close();
35
36 ƒƒ}
37 ƒƒ...
99 }

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 545

A disadvantage of this approach is that the number of records must be kept accurate.
This may be hard to guarantee if the file is edited directly by users. However, it is not
difficult if the file is always created by a program.

Listing 10-8 shows a constructor using this approach. It could be substituted for the
constructor shown in Listing 10-7, provided the data file were changed to include the
number of records in the file.

5
Kenneth A Parsons
1997/8/7 M L
Beth A Reyburn
1993/8/27 F L
Kathleen A Waller
1979/5/4 F B
Roydyn A. Clayton
1993/5/25 M L
Christopher Aaron Fairles
1981/2/2 M B

546
C

H
A
P
T
E
R

10
 |
 A

R
R
A
Y
S

LOOKING AHEAD

An array that appears
to grow can also solve
this problem. See
Section 10.4.

(figure 10-14)

File with the number of

records stored as the first

data item

Listing 10-8: Initializing an array when the data file contains the number of records

1 ƒƒpublicƒBigBroBigSis(StringƒfileName)
2 ƒƒ{ƒsuper();
3 ƒƒƒƒScannerƒinƒ=ƒthis.openFile(fileName);
4
5 ƒƒƒƒ// Get the number of records in the file.

6 ƒƒƒƒintƒcountƒ=ƒin.nextInt();
7 ƒƒƒƒin.nextLine();
8
9 ƒƒƒƒ// Allocate an array to hold each record we read.

10 ƒƒƒƒthis.personsƒ=ƒnewƒPerson[count];
11
12 ƒƒƒƒ// Read the data, storing a reference to each object in the array.

13 ƒƒƒƒforƒ(intƒiƒ=ƒ0;ƒiƒ<ƒcount;ƒi++)
14 ƒƒƒƒ{ƒthis.persons[i]ƒ=ƒnewƒPerson(in);
15 ƒƒƒƒ}
16 ƒƒƒƒin.close();
17 ƒƒ}

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 546

Array Initializers (optional)

Java provides a handy shortcut to initialize an array if you know its contents when you
write the program. Essentially, you place the array elements in a comma-separated list
between curly braces, as shown in the following example:

bbbs.personsƒ=ƒnewƒPerson[]
ƒƒ{ƒnewƒPerson("Byron",ƒ"1961/3/21",
ƒƒƒƒƒƒƒƒGender.MALE,ƒRole.BIG),
ƒƒƒƒnewƒPerson("Ann",ƒ"1960/12/3",
ƒƒƒƒƒƒƒƒGender.FEMALE,ƒRole.BIG),
ƒƒƒƒnewƒPerson("Luke",ƒ"1990/10/1",
ƒƒƒƒƒƒƒƒGender.MALE,ƒRole.LITTLE),
ƒƒƒƒnewƒPerson("Joel",ƒ"1994/2/28",
ƒƒƒƒƒƒƒƒGender.MALE,ƒRole.LITTLE)
ƒƒ};

Java will automatically create an array of the right length to hold all the elements
listed. In fact, if you try to specify the size yourself, the compiler will give you an error.

10.3 Passing and Returning Arrays

Like other reference variables, references to arrays can be passed to a method via para-
meters and returned from a method using the return keyword.

One common activity that demonstrates both passing and returning arrays is to extract
a subset from a larger array. For example, return an array of Person objects that con-
tains only “bigs” who are female. To make the method more versatile, we’ll pass the
desired gender and role as arguments. The method’s signature is as follows:

publicƒPerson[]ƒextractSubset(Genderƒg,ƒRoleƒr)

The return type of Person[] indicates that the method will return a reference to an
array of Person objects.

To solve this problem, we need to create an appropriately sized array—which means
figuring out the size of the subset. Then we need to fill the array. In pseudocode, we can
state our tasks as follows:

size = count number of elements in the subset
subset = a new array to store size elements
fill subset with the appropriate objects
return subset

547
10

.3
P

A
S
S
IN

G
A
N
D

R
E
T
U
R
N
IN

G
A

R
R
A
Y
S

LOOKING AHEAD

Problem 12.13
generalizes this

method with
interfaces and

polymorphism.

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 547

The first step, counting the size of the subset, is an application of the Process Matching
Elements pattern in which the process performed is simply counting. Its signature and
method documentation are as follows; implementing it is Problem 10.7.

/** Count the number of persons matching the given gender and role.
* @param g The gender of persons to be included in the subset.
* @param r The role of the persons to be included in the subset. */
privateƒintƒcountSubset(Genderƒg,ƒRoleƒr)

The second step, allocating a temporary array, illustrates that declaring and allocating
an array within a method is both possible and useful. As always, the access modifier,
such as private, is omitted when declaring a temporary variable.

Person[]ƒsubsetƒ=ƒnewƒPerson[size];

The third step, filling the subset array, is the tricky one. We’ll pass the method the
gender and role of the Person objects desired, as well as a reference to the temporary
array. The method’s signature will be:

privateƒvoidƒfillSubset(Person[]ƒss,ƒGenderƒg,ƒRoleƒr)

Again, notice the type Person[]. The parameter variable ss will refer to an array of
Person objects. Like other references passed as parameters, ss will contain an alias to
subset; both references refer to the same array and both can be used to access and
change the contents of the array. The reference itself cannot be changed, but the thing
it refers to can be changed.

Inside the method, we’ll repeatedly find the next person object with the appropriate
gender and role, copying a reference to it into the next available space in the temporary
array. This will require two index variables, one to keep track of where we are in the
persons array and the other to track our position in the subset array.

Figure 10-15 shows the situation immediately after the first Person object has been
inserted into the subset. The index variable ssPos (“subset position”) gives the index
of the next available position in the subset array. The variable arrPos (“array posi-
tion”) gives the index of the next Person object to consider. The colored arrows show
Person objects that have yet to be copied.

548
C

H
A
P
T
E
R

10
 |
 A

R
R
A
Y
S

LOOKING AHEAD

Aliases were
discussed in
Section 8.2.2.

Process Matching
Elements

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 548

The code for the helper method is shown in lines 27–38 of Listing 10-9. Notice that
ssPos is only incremented when a new element is added to the subset (line 34) but that
arrPos is incremented each time a new Person object is considered (line 36).

The final step in the extractSubset method is to return a reference to the subset
array (line 13).

Roydyn, 1993/5/25, M, L

Kala, 1992/2/16, F, L

Ali, 1985/7/12, M, B

Beth, 1993/8/27, F, L

Kathleen, 1979/5/4, F, B

Steve, 1968/12/24, M, B

Person[]
length 8

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

persons

Zaki, 1980/9/2, F, B

Person[]
length 3

[0]

[1]

[2]

ss

ssPos 1

arrPos 2

Susan, 1983/8/7, F, B

549
10

.3
P

A
S
S
IN

G
A
N
D

R
E
T
U
R
N
IN

G
A

R
R
A
Y
S

(figure 10-15)

Filling the subset array,

immediately after the first

Person object reference

has been copied to the

subset array

ch10/bbbs/

Listing 10-9: Completed code for the extractSubset method

1 publicƒclassƒBigBroBigSisƒextendsƒObject
2 {ƒprivateƒPerson[]ƒpersons;ƒƒƒƒ// The list of bigs and littles.

3
4 ƒƒ...
5
6 ƒƒ/** Extract a subset of all the persons who have the given gender and role.

7 ƒƒ* @param g The gender of all members of the subset.

8 ƒƒ* @param r The role of all members of the subset. */

9 ƒƒpublicƒPerson[]ƒextractSubset(Genderƒg,ƒRoleƒr)
10 ƒƒ{ƒintƒssSizeƒ=ƒthis.countSubset(g,ƒr);
11 ƒƒƒƒPerson[]ƒsubsetƒ=ƒnewƒPerson[ssSize];
12 ƒƒƒƒthis.fillSubset(subset,ƒg,ƒr);
13 ƒƒƒƒreturnƒsubset;
14 ƒƒ}
15
16 ƒƒ/** Count the number of persons matching the given gender and role.

17 ƒƒ* @param g The gender of persons to be counted.

18 ƒƒ* @param r The role of the persons to be counted. */

19 ƒƒprivateƒintƒcountSubset(Genderƒg,ƒRoleƒr)
20 ƒƒ{ƒƒƒƒƒƒ// to be completed as an exercise

21 ƒƒ}

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 549

Client code using the BBBS class could use the extractSubset method as follows:

Person[]ƒfemaleBigsƒ=ƒbbbs.extractSubset(Gender.FEMALE,
ƒƒƒRole.BIG);
System.out.println("FemaleƒBigs:");
forƒ(Personƒpƒ:ƒfemaleBigs)
{ƒSystem.out.println(p.getName());
}

Passing and returning arrays of information are useful techniques. For example, the
Big Brother/Big Sister project might have a reporting subsystem that could use such
techniques extensively. Imagine a suite of subset extraction methods that each return a
subset of a passed array. They could be put together in endless combinations. We could
have, for example, a query like this, in which each extract method takes a criterion
and an array as arguments:

Person[]ƒssƒ=ƒthis.extract(Gender.MALE,ƒ
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒthis.extract(Role.LITTLE,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒthis.extract(Interests.SPORTS,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒthis.persons)));
this.print(ss);

550
C

H
A
P
T
E
R

10
 |
 A

R
R
A
Y
S

Listing 10-9: Completed code for the extractSubset method (continued)

22
23 ƒƒ/** Fill the subset array with Person objects matching the given gender and role.

24 ƒƒ* @param subset The array to fill with elements belonging to the subset.

25 ƒƒ* @param g The gender of persons to be included in the subset.

26 ƒƒ* @param r The role of the persons to be included in the subset. */

27 ƒƒprivateƒvoidƒfillSubset(Person[]ƒss,ƒGenderƒg,ƒRoleƒr)
28 ƒƒ{ƒintƒssPosƒ=ƒ0;ƒƒƒ// position within the subset

29 ƒƒƒƒintƒarrPosƒ=ƒ0;ƒƒ// position within the array

30 ƒƒƒƒwhileƒ(ssPosƒ<ƒss.length)
31 ƒƒƒƒ{ƒPersonƒpƒ=ƒthis.persons[arrPos];
32 ƒƒƒƒƒƒifƒ(p.getGender()ƒ==ƒgƒ&&ƒp.getRole()ƒ==ƒr)
33 ƒƒƒƒƒƒ{ƒss[ssPos]ƒ=ƒp;
34 ƒƒƒƒƒƒƒƒssPos++;
35 ƒƒƒƒƒƒ}
36 ƒƒƒƒƒƒarrPos++;
37 ƒƒƒƒ}
38 ƒƒ}
39 }

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 550

10.4 Dynamic Arrays

So far, the number of elements stored in our arrays has been fixed. We’ve neither added
elements nor removed them. To be truly useful, this must change. For example, in the Big
Brother/Big Sister program, we need a method to add a new person to the persons array:

/** Add another person to the array of Person objects.
*ƒ@param p The Person object to add. */
publicƒvoidƒadd(Personƒp)

To implement add, we must figure out how to “create” additional space in the array.
In this section, we’ll explore two approaches to this problem, and ultimately conclude
that the best solution uses features of both.

10.4.1 Partially Filled Arrays

The first approach uses a simple idea: Create an array with room to grow, if necessary.
This separates the notion of the size of the array (the number of elements it currently
stores) from the length of the array (the maximum number of elements it can store).
This requires an auxiliary variable that we usually name size. Such an array is usually
only partly filled, so we’ll call it a partially filled array.

We will adopt a convention that indices in the range 0..size-1 will hold the valid ele-
ments while indices size..length-1 will be “empty.” This is illustrated in Figure 10-16.

Ken, 1997/8/7, M, L

Beth, 1993/8/27, F, L

Kathleen, 1979/5/4, F, B

Steve, 1968/12/24, M, B

Person[]
length 8

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

persons

size 4

null

null

null

null

551
10

.4
D

Y
N
A
M

IC
A

R
R
A
Y
S

KEY IDEA

Allocate extra space
for the array. Use the

first elements to store
data. Keep the

number of elements
in use in another

variable.

(figure 10-16)

Partially filled array with

four elements

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 551

The auxiliary variable, size, can be interpreted two ways. First, it can be interpreted
as the number of elements in the array that store valid data. This interpretation is use-
ful for the Process All Elements and related patterns. For example, to print all the
names in the partially filled persons array, we write

forƒ(intƒiƒ=ƒ0;ƒiƒ<ƒthis.size;ƒi++)
{ƒPersonƒpƒ=ƒthis.persons[i];
ƒƒSystem.out.println(p.getName());
}

Notice the use of this.size rather than this.persons.length to control the
loop. If the array is as shown in Figure 10-16, using length would result in a
NullPointerException when the name for persons[4] is printed because p would
be null.

The other Process All Elements idiom, using the foreach loop, will not work with par-
tially filled arrays. Writing forƒ(Personƒpƒ:ƒthis.persons) is the same as writ-
ing forƒ(intƒiƒ=ƒ0;ƒiƒ<ƒthis.persons.length;ƒi++).

The second interpretation of size is as the first element of the “empty” portion of the
array. This interpretation is the natural one for the add method because it tells us
where to put the new element.

publicƒvoidƒadd(Personƒp)
{ƒthis.persons[this.size]ƒ=ƒp;
ƒƒthis.size++;
}

After a new element is added, the auxiliary variable must be incremented.

Of course, if the array is already full (size has the same value as persons.length),
the add method will fail with an ArrayIndexOutOfBoundsException. We will
investigate a solution to this problem shortly.

Inserting into a Sorted Array

If the array is already sorted and you want to keep it sorted, simply adding the new ele-
ment to the end isn’t good enough. One approach would be to add to the end and then
sort the entire array, but that is inefficient. A much better approach is to move elements
larger than the new element down in the array. The new element can then be inserted
in the resulting “hole.” These steps are shown in Figure 10-17.

552
C

H
A
P
T
E
R

10
 |
 A

R
R
A
Y
S

LOOKING AHEAD

Implementing this
algorithm is
Problem 10.8.

KEY IDEA

size also says where
the next element
should be added.

KEY IDEA

The foreach loop
doesn’t work for
partially filled arrays.

KEY IDEA

size says how
many elements have
valid data.

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 552

Deletion

When deleting an element, we need to fill the “hole” left by the deleted element so that
all the valid array elements are kept at the beginning of the partially filled array and all
the unused space at the end. We’ll use the following algorithm:

d = find the index of the element to delete
fill d with another element from the array
decrement size, the auxiliary variable
assign null to the element at sizeƒ

The first step may be trivial if we are given the index of the element to delete. In other
situations, we may need to search for the element to find the index.

The second step varies, depending on whether a sorted order must be maintained. If
the array is unsorted, use the last element of the array to replace the element being
deleted. In a sorted array, the elements with indices larger than d all need to be moved
up one position in the array.

The third step recognizes that there is now one less element in the array.

The last step is not strictly necessary, however it is a good idea to assign null to the
element for two reasons. First, it can make debugging easier because accidentally
accessing an element in the unused portion of the partially filled array will generate a
NullPointerException, quickly informing us that we made a mistake. Second, it
may free an object for garbage collection, thereby reducing the memory required by
our program.

Kathy

Person[]
length 8

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

null

null

null

null

Beth

Ken

Steve

Amy

8

persons

4size

p

Kathy

Person[]
length 8

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7] null

null

null

Beth

Ken

Steve

Amy

8

persons

4size

p

Kathy

Person[]
length 8

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7] null

null

null

Beth

Ken

Steve

Amy

8

persons

5size

p

The original array containing
four Person objects

Move references at the end of
the array down by one to make
room for the new element

Insert the new element and
increment the auxiliary variable,
size

553
10

.4
D

Y
N
A
M

IC
A

R
R
A
Y
S

(figure 10-17)

Inserting a new element in

an array sorted by name

LOOKING AHEAD

Written Exercise 10.1
asks you to explain

why this step is
optional.

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 553

Problems with Partially Filled Arrays

Unfortunately, partially filled arrays pose two significant problems. First, a partially
filled array solves the problem of adding elements to an array, but only up to a point.
There is still a limit. If the array is initially allocated to hold 500 elements, we can’t
insert 501. The last one just won’t fit. Using the algorithms discussed earlier will result
in an ArrayIndexOutOfBoundsException. If this abrupt ending to the program
isn’t desired, a check with a friendlier message can be made:

publicƒvoidƒadd(Personƒp)
{ƒifƒ(this.sizeƒ<ƒthis.persons.length)
ƒƒ{ƒthis.persons[this.size]ƒ=ƒp;
ƒƒƒƒthis.size++;
ƒƒ}ƒelse
ƒƒ{ƒ// error message
ƒƒ}
}

One way of addressing the first problem is to allocate arrays with more space than we
think we’ll ever use. Unfortunately, this leads to the second problem with partially
filled arrays—wasting lots of memory. In addition, history is filled with programmers
who dramatically misjudged how much data would be poured into their programs. For
example, a program written to handle people associated with the local chapter of Big
Brothers/Big Sisters might be deployed nationally and suddenly need to deal with much
more information.

In spite of these two problems, partially filled arrays are a great solution where the
amount of data can be reliably estimated.

10.4.2 Resizing Arrays

A second approach to the problem of adding and deleting elements in an array is to
“change” the size of the array. Once an array is allocated, its size can’t be changed, but
we can allocate a new array with a different size and then copy the elements from the
old array to the new array. After updating the array’s reference to point to the new
array, it appears as though the array has simply grown. The new element can then be
added. These four steps are shown in Figure 10-18.

554
C

H
A
P
T
E
R

10
 |
 A

R
R
A
Y
S

KEY IDEA

Arrays can’t change
size, but we can make
it appear as if they do.

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 554

The code to add a person to an unordered array is shown in Listing 10-10.

Person[]
length

[0]

[1]

[2]

[3]

4

Kathy

Beth

Ken

Steve

Amy

p

Person[]
length

[0]

[1]

[2]

[3]

[4]

null

null

5
null

null

persons

larger

null

Person[]
length

[0]

[1]

[2]

[3]

4

Kathy

Beth

Ken

Steve

Amy

p

Person[]
length

[0]

[1]

[2]

[3]

[4]

5

persons

larger

null

Person[]
length

[0]

[1]

[2]

[3]

4

Kathy

Beth

Ken

Steve

Amy

p

Person[]
length

[0]

[1]

[2]

[3]

[4]

5

persons

larger

null

Kathy

Beth

Ken

Steve

Amy

p

Person[]
length

[0]

[1]

[2]

[3]

[4]

5

persons

Step 1: Allocate a new, larger array Step 2: Copy the contents to the larger array

Step 3: Reassign the array reference Step 4: Add the new element

555
10

.4
D

Y
N
A
M

IC
A

R
R
A
Y
S

(figure 10-18)

Reallocating an array

Listing 10-10: Adding a Person object to an unordered array

1 publicƒclassƒBBBSƒextendsƒObject
2 {ƒprivateƒPerson[]ƒpersons;
3
4 ƒƒ...
5
6 ƒƒ/** Add a new person to the persons array.

7 ƒƒ* @param p The new person to add. */

8 ƒƒpublicƒvoidƒadd(Personƒp)
9 ƒƒ{ƒ// Step 1: Allocate a larger array.

10 ƒƒƒƒPerson[]ƒlargerƒ=ƒnewƒPerson[this.persons.lengthƒ+ƒ1];
11

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 555

There is, however, a big disadvantage to this approach. Inserting many elements is very
time consuming because so much copying is required. For example, one test1 produced
the data shown in Figure 10-19. The first column shows the number of insertions. The
second column shows the time, in seconds, required to make the insertions into an
array that grows by one with each insertion. The last column shows the number of sec-
onds required to insert the same data into a partially filled array.

a) Time to insert into an array

Insertions Grow PFA

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

100,000

110,000

120,000

130,000

140,000

150,000

0.4

1.8

6.1

14.2

28.4

46.8

78.3

123.3

179.8

239.2

304.4

389.6

476.8

623.7

779.8

0.000

0.000

0.000

0.015

0.015

0.015

0.015

0.015

0.015

0.015

0.015

0.015

0.015

0.015

0.015

b) Graphing the time to insert data into an array
that grows

Insertions (1,000's)

Se
co

nd
s

0

100

200

300

400

500

600

700

800

10 30 50 70 90 11
0

13
0

15
0

556
C

H
A
P
T
E
R

10
 |
 A

R
R
A
Y
S

Listing 10-10: Adding a Person object to an unordered array (continued)

12 ƒƒƒƒ// Step 2: Copy elements from the old array to the new, larger array.

13 ƒƒƒƒforƒ(intƒiƒ=ƒ0;ƒiƒ<ƒthis.persons.length;ƒi++)
14 ƒƒƒƒ{ƒthis.larger[i]ƒ=ƒthis.persons[i];
15 ƒƒƒƒ}
16
17 ƒƒƒƒ// Step 3: Reassign the array reference.

18 ƒƒƒƒthis.personsƒ=ƒlarger;
19
20 ƒƒƒƒ// Step 4: Add the new element.

21 ƒƒƒƒthis.persons[this.persons.length-1]ƒ=ƒp;
22 ƒƒ}
23 }

(figure 10-19)

Inserting elements in

an array

1 Using the code in examples/ch10/growArrayTest on a machine with a 2.8GHz Pentium 4
CPU and 1G of RAM running Windows XP and Java 5.

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 556

The test clearly shows that the more insertions there are, the worse the problem is. For
example, the time taken to insert the first 10,000 items is less than half a second.
Inserting the last 10,000 items, however, requires more than three minutes.
Meanwhile, inserting 150,000 items into a partially filled array is so fast the com-
puter’s clock isn’t accurate enough to time it and on the graph it can’t be distinguished
from the x axis.

10.4.3 Combining Approaches

The disadvantages of a partially filled array are an upper limit on the number of inser-
tions and wasted space if some program executions use lots of data but most do not.
On the other hand, expanding the array with each insertion solves those two problems,
but introduces a performance problem.

Combining the two approaches addresses all three issues. The strategy is to use a par-
tially filled array. When it gets full, allocate a larger array. However, don’t increase the
array by only one element. Instead, double the size of the array. That typically wastes
some space, but not more than a factor of two. If that’s too much, the array could be
increased by 25% each time it is enlarged.

The same test as shown in Figure 10-19 takes only 0.047 seconds to insert 150,000
items—a little worse than a partially filled array that is initially allocated to hold
150,000 items, but not nearly as bad as growing the array by one each time.

The ArrayList class in the Java library uses exactly this approach. It is simply a par-
tially filled array that can grow when it gets full, wrapped in a class.

Listing 10-11 shows an add method for a partially filled array that is doubled when-
ever it becomes full. Note that this same method can be used in the constructor, elimi-
nating the need to count the number of items in the file (compare Listing 10-11 with
Listing 10-7).

557
10

.4
D

Y
N
A
M

IC
A

R
R
A
Y
S

KEY IDEA

Expandable, partially
filled arrays give the

best of both
approaches.

ch10/
bbbsPartiallyFilled/

Listing 10-11: Initializing and adding to an expandable, partially filled array

1 publicƒclassƒBigBroBigSisƒextendsƒObject
2 {
3 ƒƒprivateƒPerson[]ƒpersonsƒ=ƒnewƒPerson[1]; // List of bigs and littles.

4 ƒƒprivateƒintƒsize; // Actual number of persons.

5
6 ƒƒ/** Construct a new object by reading all the bigs and littles from a file.

7 ƒƒ* @param fileName The name of the file storing the information for bigs and littles. */

8 ƒƒpublicƒBigBroBigSis(StringƒfileName)
9 ƒƒ{ƒsuper();

10

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 557

558
C

H
A
P
T
E
R

10
 |
 A

R
R
A
Y
S

Listing 10-11: Initializing and adding to an expandable, partially filled array (continued)

11 ƒƒƒƒ// Read the data, adding each person to the array

12 ƒƒƒƒScannerƒinƒ=ƒthis.openFile(fileName);
13 ƒƒƒƒwhileƒ(in.hasNextLine())
14 ƒƒƒƒ{ƒthis.add(newƒPerson(in));
15 ƒƒƒƒ}
16 ƒƒƒƒin.close();
17 ƒƒ}
18
19 ƒƒ/** Add a person to the the list of persons. */

20 ƒƒpublicƒvoidƒadd(Personƒp)
21 ƒƒ{ƒifƒ(this.persons.lengthƒ==ƒthis.size)
22 ƒƒƒƒ{ƒ// The array is full -- grow it.

23 ƒƒƒƒƒƒPerson[]ƒlargerƒ=ƒnewƒPerson[this.sizeƒ*ƒ2];
24 ƒƒƒƒƒƒforƒ(intƒiƒ=ƒ0;ƒiƒ<ƒthis.size;ƒi++)
25 ƒƒƒƒƒƒ{ƒlarger[i]ƒ=ƒthis.persons[i];
26 ƒƒƒƒƒƒ}
27 ƒƒƒƒƒƒthis.personsƒ=ƒlarger;
28 ƒƒƒƒ}
29 ƒƒƒƒthis.persons[this.size]ƒ=ƒp;
30 ƒƒƒƒthis.size++;
31 ƒƒ}
32 }

10.5 Arrays of Primitive Types

So far we have only discussed arrays of objects. Java also allows arrays of primitive types
such as integers, Booleans, and doubles. Arrays of primitives and arrays of objects share
many similarities. For example, declaring and allocating an array of four doubles bears a
striking resemblance to declaring and allocating an array of four Person objects:

Person[]ƒpersonsƒ=ƒnewƒPerson[4];
double[]ƒinterestsƒ=ƒnewƒdouble[4];

In these examples, each element in persons is automatically initialized to null and
each element in interests is automatically initialized to 0.0.

10.5.1 Using an Array of double

The Person class used in the Big Brother/Big Sister program defines four variables to
store potential interests of the participants: the extent to which they like sports, crafts,

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 558

559
10

.5
A

R
R
A
Y
S

O
F

P
R
IM

IT
IV

E
T

Y
P
E
S

games, and the outdoors. A value of 0.0 indicates they don’t have an interest in it at all
whereas a value of 1.0 indicates a very high interest. Before two people are paired,
their compatibility is determined with the getCompatibility query:

publicƒdoubleƒgetCompatibility(Personƒp)
{ƒreturnƒ(this.likesCraftsƒ*ƒp.likesCraftsƒ
ƒƒƒƒƒƒ+ƒthis.likesGamesƒ*ƒp.likesGames
ƒƒƒƒƒƒ+ƒthis.likesOutdoorsƒ*ƒp.likesOutdoors
ƒƒƒƒƒƒ+ƒthis.likesSportsƒ*ƒp.likesSports)
ƒƒƒƒƒƒ/4.0;
}ƒ

Suppose it was determined that these four interests need to be supplemented with an
additional 16, for a total of 20 different interests. Using separate variables for each one
would be tedious; an array is a much better choice. Using an array, the Person class is
written as shown in Listing 10-12.

Listing 10-12: Using an array of doubles to represent interests

1 publicƒclassƒPersonƒextendsƒObject
2 {ƒ...
3 ƒƒprivateƒstaticƒfinalƒintƒNUM_INTERESTSƒ=ƒ20;
4 ƒƒprivateƒdouble[]ƒinterestsƒ=ƒnewƒdouble[NUM_INTERESTS];
5 ƒƒ...
6
7 ƒƒpublicƒPerson(Scannerƒin)
8 ƒƒ{ƒ...
9 ƒƒƒƒ// Read this person's interests from the file.

10 ƒƒƒƒforƒ(intƒiƒ=ƒ0;ƒiƒ<ƒPerson.NUM_INTERESTS;ƒi++)
11 ƒƒƒƒ{ƒthis.interests[i]ƒ=ƒin.nextDouble();
12 ƒƒƒƒ}
13 ƒƒƒƒ...
14 ƒƒ}
15
16 ƒƒ/** How compatible is this person with person p? A score of 0.0 means not at all

17 ƒƒ* compatible; 1.0 means extremely compatible. */

18 ƒƒpublicƒdoubleƒgetCompatibility(Personƒp)
19 ƒƒ{ƒdoubleƒcompatƒ=ƒ0.0;
20 ƒƒƒƒforƒ(intƒiƒ=ƒ0;ƒiƒ<ƒPerson.NUM_INTERESTS;ƒi++)
21 ƒƒƒƒ{ƒcompatƒ=ƒcompatƒ+ƒthis.interests[i]ƒ*ƒp.interests[i];
22 ƒƒƒƒ}
23 ƒƒƒƒreturnƒcompatƒ/ƒPerson.NUM_INTERESTS;
24 ƒƒ}
25 }

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 559

560
C

H
A
P
T
E
R

10
 |
 A

R
R
A
Y
S

10.5.2 Meaningful Indices

So far the indices of our arrays have been just positions. They haven’t had any meaning
attached to them, though it is sometimes useful to do just that. Suppose, for example,
that we wanted to know the distribution of ages of the people participating in the Big
Brother/Big Sister program. That is, we want to know how many people are 10 years
old, how many are 11, and so on. We’ll assume no one is over 200 years old.

To solve this problem we can allocate an array named ageCounters with 200 ele-
ments. Each element will be a counter for a particular year. Which year? The year cor-
responding to the index. Thus, ageCounters[10] will be the number of 10 year-olds
and ageCounters[25] will be the number of 25 year-olds. We’ll have a counter for
everyone between 0 and 199 years old, inclusive.

The method shown in Listing 10-13, when added to the BigBroBigSis class, will
return a filled array giving the number of participants for each age. It could be used
like this:

int[]ƒagesƒ=ƒbbbs.getAgeCounts();
forƒ(intƒiƒ=ƒ0;ƒiƒ<ƒages.length;ƒi++)
{ƒifƒ(ages[i]ƒ>ƒ0)
ƒƒ{ƒSystem.out.printlnƒ("There are "ƒ+ƒages[i]ƒ+ƒ
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ" participants that are "ƒ+ƒiƒ+ƒ" years old.");
ƒƒ}
}

Listing 10-13: A method to count the participants in each age group

1 publicƒclassƒBigBroBigSisƒextendsƒObject
2 {ƒprivateƒPerson[]ƒpersons;
3 ƒƒprivateƒintƒsizeƒ=ƒ0;
4
5 ƒƒ...
6
7 ƒƒ/** Find the number of participants in each age group.

8 ƒƒ* @return A filled array where a[i] is the number of people i years old. */

9 ƒƒpublicƒint[]ƒgetAgeCounts()
10 ƒƒ{ƒint[]ƒageCountersƒ=ƒnewƒint[200];
11 ƒƒƒƒforƒ(intƒiƒ=ƒ0;ƒiƒ<ƒthis.size;ƒi++)
12 ƒƒƒƒ{ƒintƒageƒ=ƒthis.persons[i].getAge();
13 ƒƒƒƒƒƒageCounters[age]++;
14 ƒƒƒƒ}
15 ƒƒƒƒreturnƒageCounters;
16 ƒƒ}
17 }

ch10/
bbbsPartiallyFilled/

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 560

561
10

.5
A

R
R
A
Y
S

O
F

P
R
IM

IT
IV

E
T

Y
P
E
S

In the last example, the indices naturally matched ages because both ranges start at 0.
Sometimes that isn’t the case. Consider a slight modification of this problem: Count
the number of coins in a collection by the year they were minted. Assume the oldest
coin was minted in 1850.

This problem could be solved by allocating an array with 1850 unused elements. A bet-
ter approach is to offset the indices by 1850, as shown in Listing 10-14. The crucial
lines are 5, 16, and 22. In line 5, the constants EARLIEST and LATEST are used to cal-
culate the actual number of elements or counters that are needed. This avoids the
unused elements at the beginning of the array. In line 16, the year entered by the user is
reduced by the appropriate amount so that it can be used as an index into the array. In
line 22, the reverse is done to map the index to the appropriate year.

Listing 10-14: Offsetting an index to start at zero

1 /** Count the number of coins minted in each year. */

2 publicƒstaticƒvoidƒmain(String[]ƒargs)
3 {ƒintƒEARLIESTƒ=ƒ1850;
4 ƒƒintƒLATESTƒ=ƒ2008;
5 ƒƒint[]ƒagesƒ=ƒnewƒint[LATESTƒ-ƒEARLIESTƒ+ƒ1];
6
7 ƒƒ// Count the coins.ƒ
8 ƒƒScannerƒinƒ=ƒnewƒScanner(System.in);
9 ƒƒwhileƒ(true)

10 ƒƒ{ƒSystem.out.print("Enter a mint year or -1 to exit: ");
11 ƒƒƒƒintƒyrƒ=ƒin.nextInt();
12 ƒƒƒƒifƒ(yrƒ==ƒ-1)
13 ƒƒƒƒ{ƒbreak;
14 ƒƒƒƒ}
15
16 ƒƒƒƒages[yrƒ-ƒEARLIEST]++;
17 ƒƒ}
18
19 ƒƒ// Print out the number of coins for each year.ƒ

20 ƒƒforƒ(intƒiƒ=ƒ0;ƒiƒ<ƒages.length;ƒi++)
21 ƒƒ{ƒSystem.out.println(ages[i]ƒ+ƒ
22 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ"ƒcoinsƒmintedƒinƒ"ƒ+ƒ(iƒ+ƒEARLIEST));
23 ƒƒ}
24 }

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 561

10.6 Multi-Dimensional Arrays

Sometimes an array with more than one dimension is useful. For example, consider a
two-dimensional (2D) array recording the money given to Big Brothers/Big Sisters by
month and source. Figure 10-20 shows the source of the money across the top in cate-
gories such as United Way and government grants. Down the left side are the months.
At the intersection of each row and column is the amount of money received in a par-
ticular category in a particular month. For example, the cell in the column labeled
“Individual Donations” and in the row labeled “Apr” indicates that $4,833 were
received in April from individual donations.

Java uses one pair of brackets for each dimension of an array. The one-dimensional
arrays we used earlier in the chapter use one pair of brackets; the two-dimensional
array shown in Figure 10-20 uses two. Of course, a three-dimensional array uses three
pairs. The pattern continues for as many dimensions as you need.

int[][]ƒincomeƒ=ƒnewƒint[12][5]

The declaration on the left side of the equal sign specifies a 2D array where each cell
stores an integer. The allocation on the right side specifies that the array has 12 rows
and five columns.

Figure 10-20 is actually a bit misleading, for the following reasons:

➤ Column names like “Corporate Donations” and row names like “May” are
not directly associated with an array. The array itself is declared to store only
integers. It cannot store strings as column or row labels.

562
C

H
A
P
T
E
R

10
 |
 A

R
R
A
Y
S

(figure 10-20)

Two-dimensional array

recording income by

source and month

KEY IDEA

The first pair of
brackets is for the
rows; the second pair
of brackets is for the
columns.

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 562

563
10

.6
M

U
LT

I-D
IM

E
N
S
IO

N
A
L
A

R
R
A
Y
S

(figure 10-21)

More accurate

visualization of a two-

dimensional array

➤ Rows and columns must be accessed using integer indices.

➤ The variable name, income, actually refers to memory that holds the array; it
isn’t the array itself.

A more accurate picture of the array is shown in Figure 10-21 which takes all this into
account.

10.6.1 2D Array Algorithms

Most algorithms that process a 2D array use two nested loops. The outside loop gen-
erally specifies which row to access and the inside loop generally specifies the column.
A number of the following algorithms will display this general pattern. We say that
such an algorithm accesses the array in row-major order. Some algorithms access the
array in column-major order—the columns are indexed by the outer loop.

Printing Every Element

For example, to print the income array we could use a method like the one shown in
Listing 10-15.

int[][]
income

0 1 2 3 4

0

0

0

0

20,569

0

0

0

0

0

0

9,351

3,000

2,125

2,000

3,000

2,000

8,000

3,000

2,550

2,000

3,000

2,000

2,000

6,915

4,606

5,448

4,833

6,091

4,867

4,196

4,736

4,305

5,286

6,834

7,459

0

0

0

13,983

0

0

0

0

0

32,254

0

0

15,500

5,500

5,500

15,500

5,500

5,500

15,500

5,500

5,500

15,500

5,500

5,500

0

1

2

3

4

5

6

7

8

9

10

11

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 563

564
C

H
A
P
T
E
R

10
 |
 A

R
R
A
Y
S

The inside loop, lines 10–12, prints one entire row each time it executes. The row it
prints is specified by the outer loop, row r. After the row is printed, line 13 ends the
current line of text and begins a new line. This process of printing a row is repeated for
each row specified by the outer loop.

Notice that the number of rows is found in line 9 with this.income.length while
the number of columns in a particular row is found in line 10 with this.
income[r].length. They differ because in Java a 2D array can be ragged—each row
may have its own length. We will see an example of this in Section 10.6.3.

Sum Every Element

The same nested looping pattern can be used to find the total income, from all sources,
for the entire year:

/** Calculate the total income for the year. */
publicƒintƒgetTotalIncome()
{ƒintƒtotalƒ=ƒ0;
ƒƒforƒ(intƒrƒ=ƒ0;ƒrƒ<ƒthis.income.length;ƒr++)
ƒƒ{ƒforƒ(intƒcƒ=ƒ0;ƒcƒ<ƒthis.income[r].length;ƒc++)
ƒƒƒƒ{ƒtotalƒ=ƒtotalƒ+ƒthis.income[r][c];
ƒƒƒƒ}
ƒƒ}
ƒƒreturnƒtotal;
}

Listing 10-15: Printing a 2D array

1 publicƒclassƒBBBSIncomeƒextendsƒObject
2 {ƒ// income by month (row) and source (column)

3 ƒƒprivateƒint[][]ƒincome;
4
5 ƒƒ...
6
7 ƒƒ/** Print the income chart. */

8 ƒƒpublicƒvoidƒprintIncomeChart()
9 ƒƒ{ƒforƒ(intƒrƒ=ƒ0;ƒrƒ<ƒthis.income.length;ƒr++)

10 ƒƒƒƒ{ƒforƒ(intƒcƒ=ƒ0;ƒcƒ<ƒthis.income[r].length;ƒc++)
11 ƒƒƒƒƒƒ{ƒSystem.out.print(this.income[r][c]ƒ+ƒ"\t");
12 ƒƒƒƒƒƒ}
13 ƒƒƒƒƒƒSystem.out.println();
14 ƒƒƒƒ}
15 ƒƒ}
16 }

KEY IDEA

It’s possible to find
the number of rows in
a 2D array, as well
as the number of
columns in each row.

ch10/income/

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 564

565
10

.6
M

U
LT

I-D
IM

E
N
S
IO

N
A
L
A

R
R
A
Y
S

Every time you need to examine every cell in a 2D array, you will likely use this nested
looping pattern.

Summing a Column

To find the total of the individual donations in one year, we need to sum column 2 in
the income array. This task requires a single loop because it is working in a single
dimension—moving down the column. Passing the column index as a parameter makes
the method more flexible:

/** Calculate the total income for a given category for the year.
* @param columnNum The index of the column containing the desired category. */
publicƒintƒgetTotalByCategory(intƒcolumnNum)
{ƒintƒtotalƒ=ƒ0;
ƒƒforƒ(intƒrƒ=ƒ0;ƒrƒ<ƒthis.income.length;ƒr++)
ƒƒ{ƒtotalƒ=ƒtotalƒ+ƒthis.income[r][columnNum];
ƒƒ}
ƒƒreturnƒtotal;
}

10.6.2 Allocating and Initializing a 2D Array

As with a one-dimensional array, the declaration and allocation of the array can be
split. This means that determining the size of an array can be delayed until the program
is actually executing. For example, the array could be initialized from a file where the
first two numbers indicate the number of rows and columns, respectively.

The first five rows of such a data file are shown in Figure 10-22. The constructor
shown in Listing 10-16 shows how the array is allocated and then initialized using this
data. The size of the array is determined in lines 11 and 12. The array itself is allocated
using those sizes in line 16. Finally, the data is read and stored in the array using the by
now familiar double loop in lines 19-24. The calls to nextLine in lines 13 and 23 are
not strictly necessary because nextInt will read across line boundaries; however,
using nextLine shows where line endings are expected in the file and adds to the clar-
ity of the code.

12 5
0 3000 6915 0 15500
0 2125 4606 0 5500
0 2000 5448 0 5500
0 3000 4833 13983 15500
...

(figure 10-22)

Sample data file

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 565

566
C

H
A
P
T
E
R

10
 |
 A

R
R
A
Y
S

10.6.3 Arrays of Arrays

The picture we’ve used so far of a 2D array having rows and columns is adequate in
most circumstances (see Figure 10-21). However, it doesn’t match reality and some-
times knowing all the details is useful.

In reality, a 2D array is an array of arrays, as illustrated in Figure 10-23. The variable
income actually refers to a one-dimensional array with 12 elements. Each element in
that 1D array refers to an array with five elements—a “row” of the 2D array.

We can now understand accessing the number of rows and columns in an array. When
we write this.income.length, it returns the length of the array holding the rows—
the number of rows in the 2D array. When we write this.income[r].length, it

Listing 10-16: Allocating and initializing a 2D array from a file

1 publicƒclassƒBBBSIncomeƒextendsƒObject
2 {
3 ƒƒ// Income by month (row) and source (column).

4 ƒƒprivateƒint[][]ƒincome;
5
6 ƒƒ/** Read the income data from a file.

7 ƒƒ * @param in The open file containing the data. */

8 ƒƒpublicƒBBBSIncome(Scannerƒin)
9 ƒƒ{ƒsuper();

10 ƒƒƒƒ// Get the size of the array.

11 ƒƒƒƒintƒrowsƒ=ƒin.nextInt();
12 ƒƒƒƒintƒcolsƒ=ƒin.nextInt();
13 ƒƒƒƒin.nextLine();
14
15 ƒƒƒƒ// Allocate the array.

16 ƒƒƒƒthis.incomeƒ=ƒnewƒint[rows][cols];
17
18 ƒƒƒƒ// Fill the array.

19 ƒƒƒƒforƒ(intƒrƒ=ƒ0;ƒrƒ<ƒthis.income.length;ƒr++)
20 ƒƒƒƒ{ƒforƒ(intƒcƒ=ƒ0;ƒcƒ<ƒthis.income[r].length;ƒc++)
21 ƒƒƒƒƒƒ{ƒthis.income[r][c]ƒ=ƒin.nextInt();
22 ƒƒƒƒƒƒ}
23 ƒƒƒƒƒƒin.nextLine();
24 ƒƒƒƒ}
25 ƒƒ}
26 }

ch10/income/

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 566

returns the length of the array stored in income[r]—the length of row r, or the num-
ber of columns in that row.

Sometimes, viewing a 2D array this way can work to our advantage in writing a pro-
gram, too. For example, suppose you want to swap row r and row s in the array
income. Rather than swap each element in row r with the corresponding element in
row s, we can write:

int[]ƒtempƒ=ƒincome[r];
income[r]ƒ=ƒincome[s];
income[s]ƒ=ƒtemp;

The first line declares a temporary variable to store a 1D array. Then the rows are
swapped by swapping their references. There is no equivalent way to swap columns.

Another way in which the array of arrays viewpoint can make a difference in our code
is a method that takes an entire row as a parameter. For example, we might already
have a simple utility method to sum a 1D array:

privateƒintƒsum(int[]ƒa)
{ƒintƒsumƒ=ƒ0;
ƒƒforƒ(intƒiƒ=ƒ0;ƒiƒ<ƒa.length;ƒi++)
ƒƒ{ƒsumƒ=ƒsumƒ+ƒa[i];
ƒƒ}
ƒƒreturnƒsum;
}

le
ng

th [0
]

[4
]

5

in
t[

]

[2
]

[3
]

[1
]

0

3,
00

0

4,
83

3

13
,9

83

15
,5

00

le
ng

th [0
]

[4
]

5

in
t[

]

[2
]

[3
]

[1
]

0

3,
00

0

6,
91

5 0

15
,5

00

le
ng

th [0
]

[4
]

5

in
t[

]

[2
]

[3
]

[1
]

0

2,
12

5

4,
60

6 0

5,
50

0

le
ng

th [0
]

[4
]

5

in
t[

]

[2
]

[3
]

[1
]

0

2,
55

0

4.
73

6 0

5,
50

0

le
ng

th [0
]

[4
]

5

in
t[

]

[2
]

[3
]

[1
]

9,
35

1

2,
00

0

7,
45

9 0

5,
50

0

le
ng

th [0
]

[4
]

5

in
t[

]

[2
]

[3
]

[1
]

20
,5

69

2,
00

0

6,
09

1 0

5,
50

0

le
ng

th [0
]

[4
]

5

in
t[

]

[2
]

[3
]

[1
]

0

3,
00

0

5,
28

6

32
,2

54

15
,5

00le
ng

th [0
]

[4
]

5

in
t[

]

[2
]

[3
]

[1
]

0

3,
00

0

4,
19

6 0

15
,5

00

length

[0]

[8]

[9]

[10]

[11]

12

int[][]

[5]

[6]

[7]

[2]

[3]

[4]

[1]

income

le
ng

th [0
]

[4
]

5

in
t[

]

[2
]

[3
]

[1
]

0

2,
00

0

5,
44

8 0

5,
50

0

le
ng

th [0
]

[4
]

5

in
t[

]

[2
]

[3
]

[1
]

0

8,
00

0

4,
86

7 0

5,
50

0

le
ng

th [0
]

[4
]

5

in
t[

]

[2
]

[3
]

[1
]

0

2,
00

0

4,
30

5 0

5,
50

0

le
ng

th [0
]

[4
]

5

in
t[

]

[2
]

[3
]

[1
]

0

2,
00

0

6,
83

4 0

5,
50

0

567
10

.6
M

U
LT

I-D
IM

E
N
S
IO

N
A
L
A

R
R
A
Y
S

(figure 10-23)

Viewing a 2D array as an

array of arrays

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 567

We can find the sum of the entire income array by passing sum a row at a time:

publicƒintƒgetTotalIncome()
{ƒintƒtotalƒ=ƒ0;
ƒƒforƒ(intƒrƒ=ƒ0;ƒrƒ<ƒthis.income.length;ƒr++)
ƒƒ{ƒtotalƒ=ƒtotalƒ+ƒthis.sum(this.income[r]);
ƒƒ}
ƒƒreturnƒtotal;
}

A final use of the array-of-arrays view is when rows of the array have different lengths.
For example, Blaise Pascal explored the many properties of a pattern of numbers that
has come to be known as “Pascal’s Triangle.” The first five rows of the triangle are
shown in Figure 10-24. The first and last element of each row is 1. The elements in
between are the sum of two elements from the row before it.

A 2D array to store the first 10 rows of Pascal’s Triangle can be declared and allocated
with the following statement:

int[][]ƒpascalƒ=ƒnewƒint[10][];

Notice that the last pair of brackets is empty. This causes Java to allocate only one
dimension of the array. We can now allocate the rest of the array—with each row hav-
ing the appropriate length—with the following loop. It first allocates a 1D array the
correct length and then inserts it into the pascal array.

forƒ(intƒrƒ=ƒ0;ƒrƒ<ƒpascal.length;ƒr++)
{ƒpascal[r]ƒ=ƒnewƒint[r+1];

ƒƒ// the array must still be initialized with the correct values!
}

1 2 1

11

1

1

1

3

4

1

6 4

3

1

568
C

H
A
P
T
E
R

10
 |
 A

R
R
A
Y
S

(figure 10-24)

Pascal’s Triangle

LOOKING AHEAD

See Problem 10.12.

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 568

569
10

.7
G
U
I: A

N
IM

A
T
IO

N

This solution provides two interesting elements: First, because each row is just the right
length, no space is wasted. Second, the array can still be printed with our standard
nested loop, as follows:

forƒ(intƒrƒ=ƒ0;ƒrƒ<ƒpascal.length;ƒr++)
{ƒforƒ(intƒcƒ=ƒ0;ƒcƒ<ƒpascal[r].length;ƒc++)
ƒƒ{ƒSystem.out.print(pascal[r][c]ƒ+ƒ"\t");
ƒƒ}
ƒƒSystem.out.println();
}

10.7 GUI: Animation

There are several ways to perform animation in a graphical user interface. We’ve
already seen a primitive animation in the Thermometer example in Section 6.7.3. In
that example, the line representing the mercury in the thermometer was drawn several
times, each time a little longer than before.

In Chapter 9, we saw how to display a single image from a file. In this section, we’ll com-
bine that capability with arrays to display a simple animation. The principle of this ani-
mation approach is to store a sequence of images in an array. The image displayed is
switched from one image to the next quickly enough that it fools the eye into thinking
there is smooth motion. Our example will use the six images shown in Figure 10-25.
When shown repeatedly in quick succession, the eyes appear to roll. The images them-
selves were created with a graphics program that can create .gif files.

Listing 10-17 and Listing 10-18 work together to show two happy face images, one
with the eyes rolling clockwise and the other with the eyes rolling counterclockwise.
One goes through the array forward as it displays the images; the other goes through
the array backward as it displays the images.

The main method for the program is shown in Listing 10-17 and follows our standard
pattern: Create the components we need (two instances of a custom component named
AnimateImage), put them in an instance of JPanel, and then put the panel in an
instance of JFrame.

(figure 10-25)

Six images used in an

animation

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 569

570
C

H
A
P
T
E
R

10
 |
 A

R
R
A
Y
S

Lines 25-28 start two threads, one for each animation. Just like threads allowed robots
in Section 3.5.2 to move independently and simultaneously, these threads allow each
animation to run independently of the other.

Listing 10-17: The main method for an animation

1 importƒjavax.swing.*;
2
3 /** Create an animated image.

4 *

5 *ƒ@author Byron Weber Becker */

6 publicƒclassƒMainƒextendsƒObject
7 {
8 ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
9 ƒƒ{ƒ// Create two animated components.

10 ƒƒƒƒAnimateImageƒanim1ƒ=ƒnewƒAnimateImage("img",ƒ6,ƒ".gif",ƒ1);
11 ƒƒƒƒAnimateImageƒanim2ƒ=ƒnewƒAnimateImage("img",ƒ6,ƒ".gif",ƒ-1);
12
13 ƒƒƒƒ// Put the components in a panel and then in a frame.

14 ƒƒƒƒJPanelƒcontentsƒ=ƒnewƒJPanel();
15 ƒƒƒƒcontents.add(anim1);
16 ƒƒƒƒcontents.add(anim2);
17
18 ƒƒƒƒJFrameƒfƒ=ƒnewƒJFrame("Animations");
19 ƒƒƒƒf.setContentPane(contents);
20 ƒƒƒƒf.pack();
21 ƒƒƒƒf.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
22 ƒƒƒƒf.setVisible(true);
23
24 ƒƒƒƒ// Run each animation in its own thread.

25 ƒƒƒƒThreadƒt1ƒ=ƒnewƒThread(anim1);
26 ƒƒƒƒt1.start();
27 ƒƒƒƒThreadƒt2ƒ=ƒnewƒThread(anim2);
28 ƒƒƒƒt2.start();
29 ƒƒ}
30 }

The component that actually does the animation is shown in Listing 10-18. Its key fea-
tures are the following:

➤ An array to store the images comprising the animation is declared (line 10)
and initialized with the images (lines 28–31).

➤ An instance variable, currentImage, holds the array index of the image cur-
rently being displayed.

ch10/animation/

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 570

571
10

.7
G
U
I: A

N
IM

A
T
IO

N

➤ A method overriding paintComponent paints the image indexed by
currentImage on the screen.

➤ A run method is required to implement the interface Runnable. When the
thread is started in the main method, this is the method that runs. It loops for-
ever. With each iteration, it advances currentImage to be either the next
image or the previous image, depending on the value stored in the instance
variable direction. After requesting that the system repaint the component
by calling repaint, the method sleeps for 0.10 seconds to give the user time
to see the new image.

Listing 10-18: A component that shows images in sequence to produce an animation

1 importƒjavax.swing.*;

2 importƒjava.awt.*;
3
4 /** Instances of AnimateImage show a sequence of images to produce an animation.

5 *

6 * @author Byron Weber Becker */

7 publicƒclassƒAnimateImageƒextendsƒJComponentƒ
8 ƒƒƒƒƒƒƒƒƒƒƒƒƒimplementsƒRunnable
9 {

10 ƒƒprivateƒImageIcon[]ƒimages;
11 ƒƒprivateƒintƒcurrentImageƒ=ƒ0;
12 ƒƒprivateƒintƒdirection;
13
14 ƒƒ/** Construct a new animation component, loading all the images. Images are read from

15 ƒƒ* files whose names have three parts: a root string, a sequence number, and an extension.

16 ƒƒ*

17 ƒƒ* @param fileNameRoot The root of the image filenames.

18 ƒƒ* @param numImages The number of images in the animation.

19 ƒƒ* @param extension The extension used for the images (e.g., .gif)

20 ƒƒ* @param dir 1 to animate going forward through the array; -1 to animate

21 ƒƒ* going backward through the array. */ƒ
22 ƒƒpublicƒAnimateImage(StringƒfileNameRoot,ƒintƒnumImages,ƒ
23 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒStringƒextension,ƒintƒdir)
24 ƒƒ{ƒsuper();
25 ƒƒƒƒthis.imagesƒ=ƒnewƒImageIcon[numImages];
26 ƒƒƒƒthis.directionƒ=ƒdir;
27
28 ƒƒƒƒforƒ(intƒi=0;ƒi<numImages;ƒi++)
29 ƒƒƒƒ{ƒStringƒfileNameƒ=ƒfileNameRootƒ+ƒiƒ+ƒextension;
30 ƒƒƒƒƒƒthis.images[i]ƒ=ƒnewƒImageIcon(fileName);
31 ƒƒƒƒ}
32

ch10/animation/

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 571

572
C

H
A
P
T
E
R

10
 |
 A

R
R
A
Y
S

10.8 Patterns

Many patterns involve arrays. They include initialization and changing the size of an
array, as well as many algorithms. This section contains only a sampling of what could
be considered patterns in this chapter.

Listing 10-18: A component that shows images in sequence to produce an animation (continued)

33 ƒƒƒƒthis.setPreferredSize(newƒDimension(
34 ƒƒƒƒƒƒƒƒƒƒƒƒthis.images[0].getIconWidth(),
35 ƒƒƒƒƒƒƒƒƒƒƒƒthis.images[0].getIconHeight()));
36 ƒƒ}
37
38 ƒƒ/** Paint the current image on the screen. */

39 ƒƒpublicƒvoidƒpaintComponent(Graphicsƒg)
40 ƒƒ{ƒsuper.paintComponent(g);
41 ƒƒƒƒImageƒimgƒ=ƒthis.images[this.currentImage].getImage();
42 ƒƒƒƒg.drawImage(img,ƒ0,ƒ0,ƒnull);
43 ƒƒ}
44
45 ƒƒ/** Run the animation. */

46 ƒƒpublicƒvoidƒrun()
47 ƒƒ{ƒwhileƒ(true)
48 ƒƒƒƒ{ƒ// Select the next image and call for the system to repaint the component.

49 ƒƒƒƒƒƒ// If this.dir is negative, the remainder operator doesn't work as desired. Add

50 ƒƒƒƒƒƒ// this.images.length to compensate.

51 ƒƒƒƒƒƒthis.currentImageƒ=ƒ(this.currentImageƒ+ƒthis.direction
52 ƒƒƒƒƒƒƒƒƒƒƒƒ+ƒthis.images.length)ƒ%ƒthis.images.length;
53 ƒƒƒƒƒƒthis.repaint();
54 ƒƒƒƒƒƒtryƒ
55 ƒƒƒƒƒƒ{ƒThread.sleep(100); // Use the sleep method in the Java library.

56 ƒƒƒƒƒƒ}ƒcatchƒ(InterruptedExceptionƒex)ƒ
57 ƒƒƒƒƒƒ{// ignore

58 ƒƒƒƒƒƒ}
59 ƒƒƒƒ}
60 ƒƒ}
61 }

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 572

10.8.1 The Process All Elements Pattern

Name: Process All Elements

Context: You have a collection of values stored in an array and need to perform the
same operation on all of them.

Solution: Use a for loop to process each element of the array, one element with each
iteration of the loop. The following code template applies:

forƒ(«elementType»ƒ«elementName»ƒ:ƒ«arrayName»)
{ƒ«statements to process element»
}

For example, to print the names of all the elements in the persons array:

forƒ(Personƒpƒ:ƒthis.persons)
{ƒSystem.out.println(p.getName());
}

Consequences: Each element in the array is processed by the statements inside the loop.
If the array happens to be partially filled, the preceding form will cause a null pointer
exception. Then the alternate form, which uses an explicit index and an auxiliary vari-
able, should be used.

Related Patterns: The Process Matching Elements, Find an Extreme, Selection Sort,
and many other patterns are specializations of the Process All Elements pattern.

10.8.2 The Linear Search Pattern

Name: Linear Search

Context: You have an indexed collection and are interested in objects in the collection
that satisfy a particular property. You want to do one of the following tasks:

➤ determine whether an element satisfying the property exists in the collection

➤ determine the position of the first or last element in the collection that satisfies
the property

➤ retrieve the first or last element in the collection that satisfies the property

Solution: Write a method that takes the criteria that identify the desired element as one
or more parameters. Use the Process All Elements pattern to test each element of the
array against the criteria. An element satisfying them can be saved and returned after
the loop, or more efficiently, returned as soon as it is found. The following code tem-
plate uses the early return approach and assumes a partially filled array.

573
10

.8
P

A
T
T
E
R
N
S

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 573

publicƒ«typeOfElement»ƒ«methodName»(«type»ƒ«criteria»)
{ƒforƒ(intƒiƒ=ƒ0;ƒiƒ<ƒ«auxVar»;ƒi++)
ƒƒ{ƒ«typeOfElement»ƒ«elem»ƒ=ƒ«arrayName»[i];
ƒƒƒƒifƒ(«elem»ƒsatisfiesƒ«criteria»)
ƒƒƒƒ{ƒreturnƒ«elem»;
ƒƒƒƒ}
ƒƒ}
ƒƒreturnƒ«failureValue»;
}

This basic pattern has many variations. Some of the differences are whether the array
is partially filled, whether the element is guaranteed to be found, and whether you
want to know whether such an element exists, its position, or the element itself.

Many people prefer to use a while loop instead of a for loop. In that case, use the fol-
lowing variant of the pattern. The while loop depends on short circuit evaluation to
stop the loop when the element is not found. For this to work, the test for the index
being in bounds must be first.

publicƒ«typeOfElement»ƒ«methodName»(«type»ƒ«criteria»)
{ƒintƒiƒ=ƒ0;
ƒƒwhileƒ(iƒ<ƒ«auxVar»ƒ&&ƒ
ƒƒƒƒƒƒƒƒƒ!(«arrayName»[i]ƒsatisfiesƒ«criteria»))
ƒƒ{ƒi++;
ƒƒ}

ƒƒifƒ(iƒ==ƒ«auxVar»)ƒƒ{ƒreturnƒ«failureValue»;ƒƒƒƒ}
ƒƒelseƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ{ƒreturnƒ«arrayName»[i];ƒƒƒƒ}
}

Consequences: The desired element is either found and returned, or a designated
«failureValue» is returned. If the array contains objects, the «failureValue» is
null. If the array contains primitive values, the failure value must be chosen carefully
to avoid all valid values that could be stored in the array. If no such value exists, another
technique must be used such as setting an instance variable as an error flag, returning an
object that contains the primitive value or is null, or throwing an exception.

Related Patterns: Some variations of this pattern are similar to the Process All Elements
pattern.

10.9 Summary and Concept Map

This chapter has focused on arrays, a fundamental programming structure for storing
multiple values using a single name, with individual values referenced using an integer
index. Arrays are closely related to collection classes such as ArrayList. An array
should be used when efficiency matters or when more precise control over the size of
the array is desired.

574
C

H
A
P
T
E
R

10
 |
 A

R
R
A
Y
S

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 574

Many important algorithms apply to collections that are stored in an array. Examples
include Process All Elements, Find an Extreme, Search, and Sort.

10.10 Problem Set

Written Exercises

10.1 In Section 10.4.1, it was noted that assigning null to an unused element after a
deletion from a partially filled array is not strictly necessary. Explain why a pro-
gram should work as implemented without that step. Drawing pictures may help.

10.2 Consider the code shown in Section 10.6.3 that swaps two rows of a 2D array.

a. Draw four diagrams, each one similar to Figure 10-23, that trace the three
lines of code. Assume the array has five rows with three columns each and
that r is one and s is three.

ho
ld

are
 re

fer
enc

ed
with

ar
e

so
met

im
es

are usually

may havem
ay be

track filled elements with an

m
ay be reallocated to

such as

m
us

t
be

fi
rs

t
by

se
co

nd
 b

y

th
ird

 by

are
process

ed with
such as

such as

such as

such as

ea
ch

 h
av

e
th

e
sa

me

arrays

multiple
values

meaningful

sequence
numbers

multiple
dimensions

allocating
space

find an
extreme

partially
filled arrays

auxiliary
variable

change size

algorithms insert

prepared
for use

declaring
variables initializing

elements

process all
elements

algorithms

sort

delete

type

indices

have additional

575
10

.10
P

R
O
B
LE

M
S

E
T

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 575

b. Write pseudocode for a method that swaps two rows by swapping individ-
ual elements rather than entire rows.

10.3 Write patterns, in the same style as Section 10.8, for the following:

a. Declaring, allocating, and initializing a filled array where the initial values
are read from a file

b. Finding an extreme element

c. Deleting an element from a specified index in an unsorted, partially filled array

d. Inserting an element into a sorted, partially filled array

e. Enlarging a partially filled array

Programming Exercises

10.4 In Section 10.1.7, we found the oldest person by comparing the ages of everyone
in the array. This, however, is accurate only to the nearest year. On 364 days of
the year, a person born April 1, 1987 and another born April 2, 1987 will be the
same number of years old—yet one is clearly older than the other. Rewrite the
findOldestPerson method to compare their birth dates rather than their ages.
With this modification, two people must be born on exactly the same day and year
to be considered equally old. You will need to add a method to the Person class.

10.5 Write a method named split. This method is passed a Scanner object. It
reads all of the tokens up to the end of the file, returning them as a filled array
of strings (no blanks or nulls). Do not use the split method in the String
class nor any of the collection classes.

10.6 The package becker.xtras.hangman includes classes implementing the
game of Hangman. Figure 7-13 has an image of the user interface. Extend
SampleHangman. Your new constructor should read a file of phrases that you
create and store them in an array. Override the newGame() method to choose a
random phrase from the array and then call the other newGame method with
the chosen phrase. Create a main method, as shown in the package overview,
to run your program.

10.7 Complete the countSubset helper method discussed in Section 10.3.

10.8 Write a method named add that adds a new Person object into a sorted, par-
tially filled array. You may find Figure 10-17 helpful for this.

10.9 Implement a method with the signature voidƒdelete(intƒd) that deletes the
element at index d from a partially filled array.

a. Assume the partially filled array is unsorted.

b. Assume the array is sorted.

10.10 Write a program that reads a series of daily high temperatures from a file. Print
out the number of days that each high was achieved. If you normally think of
temperatures in degrees Celsius, assume the temperatures fall between -40° and
50°. If you normally think in Fahrenheit, assume they fall between -40° and 110°.

576
C

H
A
P
T
E
R

10
 |
 A

R
R
A
Y
S

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 576

10.11 Write methods in the BBBSIncome class to:

a. Find the month with the largest income in a given category.

b. Find the category with the largest income for a given month.

c. Find the month with the largest total income from all sources.

10.12 Review Pascal’s Triangle and the code after Figure 10-24 to allocate an
array for it.

a. Draw an object diagram, similar to Figure 10-23, showing Pascal’s Triangle
as an array of arrays.

b. Complete the initialization code. Print the triangle using the algorithm in
Listing 10-15 to verify the correctness of your code.

c. Write a method, printFormatted, that prints an array representing
Pascal’s Triangle with appropriate spacing. Your output will be spaced simi-
larly to Figure 10-24, but will not display the background grid. You may
find the printf method useful; see Section 7.2.4.

d. Write a method, rowsSumToPowers. It verifies that the sum of the num-
bers in each row is 2n, where n is the row number. That is, the sum of row 0
is 20 (or 1) and the sum of row 1 is 21 (or 2). Use the pow method in the
Math class to calculate 2n.

e. Write a method, naturalNumbers. It should verify that the elements next
to the end of each row except the first, when taken in sequence, are the nat-
ural numbers. For example, the 2nd element in row 1 is 1. The second ele-
ment in row 2 is 2, and the second element in row 3 is 3. The same is true
for the element next to the end of each row. Return true if the property
holds; false otherwise.

Programming Projects

10.13 Write a program implementing a robot bucket brigade. The bucket brigade con-
sists of some number of RobotSEs positioned on consecutive intersections. There
are a number of Thing objects (buckets) on the same intersection as the first
robot in the brigade. When the program executes, the first robot will pick up one
Thing and move it to the next robot’s intersection, put it down, and return to its
original position. The next robot will then move the Thing one more position
down the line, and so on. When the brigade is finished, all the Things will be at
the other end of the line of robots, one intersection beyond the last robot.

10.14 Implement a class named SortTest. It asks the user for an array size, a file-
name, and a sorting algorithm. It then allocates an array of strings the given
length and fills it by reading tokens from the file. If the file doesn’t have
enough tokens, close it and begin reading again from the beginning. When the
array is filled, sort it using either Selection Sort or the sort method imple-
mented in java.util.Arrays (an implementation of MergeSort). Use the

577
10

.10
P

R
O
B
LE

M
S

E
T

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 577

program to construct a graph for each algorithm comparing the number of
tokens on the x axis with the time to sort on the y axis. What conclusions can
you draw about the performance of the two algorithms? (Hint: A good source
for tokens is a book such as Moby Dick, available from www.gutenberg.org.)

10.15 The user interface for graphing mathematical functions presented in Problem 7.14
is also capable of graphing polynomial functions. Polynomials have n terms added
together. Each term has the form aix

i, where ai is called the coefficient. The overall
form of a polynomial is anx

n + an-1x
n-1 + … + a0x

0. Write a class named
PolyFunc that extends Object and implements IPolynomialFunction. Write
another class, Main, that includes a main method to run the program.

a. Use PolyFunc to graph a4x
4 + a3x

3 + a2x
2 + a1x + a0, using a4=0.5, a3=

-0.75, a2=0.1, a1=0.0, and a0=-1.0.

b. Without changing PolyFunc in any way, graph
a6x

6 + a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x + a0

(You may, however, change your main method.) Choose your own coefficients.

10.16 Explore the documentation for becker.xtras.imageTransformation. This
package provides a graphical user interface for a program to transform images by
rotating, cropping, brightening, darkening, stretching, and so on. See Figure 10-26.
The actual transformations are provided by a class implementing the
ITransformations interface.

Write a class named Transformer that implements ITransformations
and provides a reset function to reset the image to the original image that
was provided as a parameter to setPixels. (Hint: Assigning references
will not be enough. You need to actually copy the array.) Add code to imple-
ment the following transformations:

a. “Darken” divides the intensity of each pixel by two.

b. “Brighten” multiplies the intensity of each pixel by two; pixels that have a
resulting value larger than 255 are set to 255.

c. “Invert” makes the light pixels dark and the dark pixels light.

578
C

H
A
P
T
E
R

10
 |
 A

R
R
A
Y
S

(figure 10-26)

Image transformation

graphical user interface

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 578

d. “FlipX” turns the picture upside down.

e. “FlipY” reverses the left and right sides of the image.

f. “FlipDiag” reverses the lower left and upper right corners.

g. “Rotate” turns the image 1⁄4 turn to the left (be careful that you don’t inad-
vertently implement “FlipDiag”).

h. “Scale50” removes every other row and every other column from the image,
making the result .25 times the size of the original.

i. “Mirror” makes an image that is twice as wide as the original image, where
the left half contains the original and the right side contains a mirror image.

j. “Blur” sets each pixel to the average of its neighbors.

10.17 Explore the documentation for the package becker.xtras.jotto. A graphi-
cal user interface, as shown in Figure 10-27, is provided in the package.

a. Write a main method, as described in the package overview, so that you can
play a game of Jotto using the supplied SampleWordList and
SampleGuessEvaluator classes together with the supplied user interface.

b. Write a class named WordList that implements the interface IWordList.
Modify your main method to run the program using your new class.
Implement it using a completely filled array.

c. Write a class named WordList that implements the interface IWordList.
Modify your main method to run the program using your new class.
Implement it using a partially filled array that includes an addWord method
which enlarges the array as required.

579
10

.10
P

R
O
B
LE

M
S

E
T

(figure 10-27)

Jotto’s graphical user

interface

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 579

d. Write a class named HintContainsLetter that extends Hint and con-
tains the code shown in the documentation for the Hint class. Modify your
main method so you can play the game and use your new hint mechanism.

e. Write a class named HintExcludesLetter. It will be similar to the class
written in part (d) except that isOK will return true when the specified
word does not contain the given character.

f. Write a class named HintContainsLetters. It will extend Hint and its
isOK method will return true if the specified word contains all of the letters
obtained with the getLetters method in the IHintData object passed as
a parameter.

g. Write a class named HintExcludesLetters. It will extend Hint and its
isOK method will return true if the specified word does not contain any of
the letters obtained with the getLetters method in the IHintData
object passed as a parameter.

h. Write a class named HintContains3Letters. It will extend Hint and its
isOK method will return true when the specified word contains at least 3 of
the letters obtained with the getLetters method in the IHintData
object passed as a parameter.

i. Generalize the class described in part (h) so that the number of letters can be
specified when the object is constructed. Name the class
HintContainsNLetters.

10.18 Explore the documentation for the package becker.xtras.marks. Write a
class named Marks that implements the interface IMarks. Write another class
named Main that contains a main method as shown in the documentation. The
result should appear similar to Figure 10-28.

10.19 Consider Table 10-1. It gives distances between pairs of cities, similar to the
charts found in some road atlases. Write a class, Distances, that has an
instance variable referring to a 2D array storing the distances. Initialize the
array from a file.

580
C

H
A
P
T
E
R

10
 |
 A

R
R
A
Y
S

(figure 10-28)

Graphical user interface

for a spreadsheet storing

marks or grades

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 580

Add the following methods:

a. displayFarthestPair finds and prints the pair of cities that is
farthest apart.

b. displayClosestPair finds and prints the pair of distinct cities that are
closest together.

c. isSymmetrical verifies that the table is symmetrical; that is, it returns
true if the distance from X to Y is the same as from Y to X for each pair of
cities, and if the distance from X to X is 0.

d. getDistance returns the distance between two cities, given their names.
(Hint: You’ll need to add a 1D array of Strings to store the city names.
Finding “Stratford” at index i indicates that i should be used as the index in
the row or column of the 2D array of distances. You may need to adjust the
format of your input file to include the city names.)

e. getTripDistance returns the total distance for a trip when given an array
of city names. The order of the names in the array corresponds to the order
the cities are visited on the trip.

10.20 Notice that less than half of the data in the distance chart shown in Table 10-1
is actually needed. The upper half of the chart isn’t needed because the array is
symmetrical. Write a program that reads data from a file such as

4
110
45ƒƒƒƒ61
107ƒƒ194ƒƒƒƒ149

where the first line gives the number of cities and the remaining lines give the
distances between cities X and Y where the index of city X is less than the
index of city Y. Note that this data corresponds to the lower left corner of
Table 10-1.

a. Write a constructor that reads this data but constructs a full 2D array, the
same as Problem 10.19.

b. Write a constructor that reads this data into a 2D array where each row is
only long enough to store the required data.

c. Add methods that perform the same calculations as a, b, d, and e in
Problem 10.19.

Kitchener London Stratford Toronto

Kitchener 0 110 45 107

London 110 0 61 194

Stratford 45 61 0 149

Toronto 107 194 149 0

581
10

.10
P

R
O
B
LE

M
S

E
T

(table 10-1)

Distances in kilometers

between cities in southern

Ontario

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 581

10 Chapter C5743 40143.ps 11/30/06 1:15 PM Page 582

