Chapter 10 ArrayS

Chapter Objectives

After studying this chapter, you should be able to:

» Store data in an array, access a single element, process all elements, search for a
particular element, and put the elements in order.

» Declare, allocate, and initialize an array.

» Handle changing numbers of elements in an array, including inserting a new ele-
ment and deleting an existing one.

» Enlarge or shrink the size of an array.

» Manipulate data stored in a multi-dimensional array.

We often work with lists in our daily lives: grocery lists, to-do lists, lists of books
needed for a particular course, the invitation list for our next party, and so on. To be
useful, computers must also work with lists: a list of the Thing objects in a City, a list
of concert tickets, or a list of bank accounts, to identify just a few.

There are several ways to implement lists in Java. One of the most fundamental
approaches is with an array, a kind of variable. Once a list is stored in the array we can
do many things: tick off the third item in our to-do list, print the entire list of books for
a course, search our list of invitations to verify that it includes James Gosling, or sort
the list alphabetically.

In Section 8.5, we studied classes in the Java library that are similar to arrays in that
they store a collection of objects. Some of these, such as ArrayList, are thinly dis-
guised arrays. Others, such as HashMap, provide more sophisticated ways to find
objects in the collection. But underneath it all, many of these classes use an array.

519

CHAPTER 10 | ARRAYS |

10.1 Using Arrays

Big Brothers/Big Sisters is a charitable association that matches men and women with
boys and girls between the ages of 6 and 16 who could benefit from an older friend and
role model. In many cases the boys and girls are missing a parent due to death or
divorce and don’t have many positive role models in their lives.

Obviously, an association like Big Brothers/Big Sisters keeps lists. One of the most cru-
cial is the list of “bigs” (the adults) and “littles” (the girls and boys) participating in the
association. In this chapter we will consider a computer program that maintains a list
of Person objects (see Figure 10-1) in an array. An array is a kind of variable that can
store many items, such as the items in a list. We will learn how to print the entire list of
people or just the people that meet certain qualifications, such as being a six-year-old
girl. We will learn how to search the list for a specific person and learn to find the per-
son that meets a maximum or minimum criterion (such as the oldest or youngest). Of
course, all these techniques will apply to lists of other kinds of objects as well.

KEY IDEA

See www.bbbsc.ca or
www.bbbsa.org for
more information on
Big Brothers/

Big Sisters.

KEY IDEA

There are many
algorithms that work
with lists of things.

(figure 10-1)

Person

-String name
-DateTime birthdate
-Gender gender
-Role role

-String pairName

+Person(String name,
DateTime bDay,
Gender gender, Role role)

+Person(Scanner in)

+int getAge()

+Gender getGender()

+String getName()

+String getPairName()

+Role getRole()

+boolean isPaired()

+void pairWith(Person p)

The simplified version of Person, shown in Figure 10-1, uses two enumerations:
Gender and Role. The first enumeration provides the values MALE and FEMALE; the
Role enumeration provides the values BIG to represent an adult participant and LITTLE
to represent a young person. The pairWith command will pair this person with the per-
son, p, specified as a parameter. It does this by setting the pairName appropriately in
both objects.

Throughout this section, we will assume that we have an array named persons con-
taining a list of Person objects. In Section 10.2, we will learn how to create such a
variable and fill it with data.

Class diagram for Person

LOOKING BACK

Enumerations are new
in Java 1.5 and are
discussed in

Section 7.3.4.

LOOKING BACK

Object diagrams were
first discussed in
Chapter 1. References
were discussed in
Section 8.2.

(figure 10-2)

Object diagram showing a
variable referring to a
Person object

(figure 10-3)

Abbreviated object
diagram

(figure 10-4)

Visualizing an array of
Person objects

10.1.1 Visualizing an Array

An object diagram for an array will require showing many Person objects. The
diagram will become quite large if we use our usual format for each Person object
(see Figure 10-2). To avoid this problem, we will abbreviate each person object in
the diagram as shown in Figure 10-3.

aPerson IZ,/—?,

Person \

name: | Steve
birthdate: | 1968/12/24
gender: | MALE
role: | BIG
\pairName: /

aPerson msteve, 1968/12/24, M, B>

In both diagrams, the box labeled aPerson is a variable that refers to an object—the
round-cornered box labeled Person.

So, what does an array look like? Figure 10-4 shows a visualization of an array of
Person objects. The reference variable persons refers to an array object. The array
object refers to many Person objects. Each reference, called an element of the array, is
numbered beginning with zero. This number is called the index.

persons /<steve, 1968/12/24, M, B>
sl @ Ken, 1997/8/7, M, L
length| 8
[0] /{Beth, 1993/8/27, F, L
[1] Kathleen, 1979/5/4, F, B
[2] Roydyn, 1993/5/25, M, L)

3]
[4]
[5]
[6]

[7]

Kala, 1992/2/16, F, L

\

\

Ali, 1985/7/12, M, B)

l

zaki, 1980/9/2, F, B>

SAVHIY ONIS) 10T |

CHAPTER 10 | ARRAYS |

Notice that an array is illustrated almost exactly like other kinds of objects. Similarities

include a variable, such as persons, that refers to the array object just as the variable
karel referred to a Robot object in earlier chapters. An array object contains a public
final instance variable named length, but has no methods. 1length stores the number
of elements in the array.

The crucial difference between arrays and objects is that the array has instance vari-
ables that are accessed with square brackets and a number instead of a name. This is
illustrated in Figure 10-4 with variables named [0], [1], and so on. The numbering
always starts at zero. This language rule often causes beginning programmers grief
because most people naturally begin numbering with one. Furthermore, the indices run
from zero to one less than the number stored in length. For example, in Figure 10-4,
length is 8 but the indices run from 0 to 7.

The fact that the elements in the array are numbered gives them an order. It makes
sense to speak of the first element (the element numbered 0), the second element, and
the last element.

10.1.2 Accessing One Array Element

Accessing a specific element in an array is as easy as accessing a normal variable—
except that the index of the desired element must also be specified. If we had a simple
variable named aPerson we could print the name with the following line of code:

System.out.println(aPerson.getName());

Printing the name of the first person in our array is almost as easy. Instead of only nam-
ing the variable, we name the array and the position of the element we want:

System.out.println(persons[0].getName());

The index of the desired element is given by appending square brackets to the name of
the array. The index appears between the brackets. You may use the result in exactly
the same ways that you use a variable of the same type.

Here is another code fragment that shows the persons array in use. In each case,
persons is followed by the index of a specific element in the array.

1 // Check if Kathleen (see Figure 10-4) is a "Big"
2 if (persons[3].getRole() == Role.BIG)
3 { System.out.println(persons[3].getName() + "isaBig.");

4}

KEY IDEA

Elements in an array
are numbered
beginning with zero.

KEY IDEA

Each element has an
index giving its
position in the array.

KEY IDEA

Arrays are indexed
with square brackets
and an integer
expression.

KEY IDEA

An element in an
array can be assigned
to another variable.

(figure 10-5)

Tracing a reference

assignment using an array

and a non-array variable

It is also possible to assign a reference from the array to a regular variable. For exam-
ple, the previous code fragment could have been written like this:

1
2
3
4
5
6

Person kathy;

/I Check if Kathleen (see Figure 10-4) is a "Big"

kathy = persons[3];

if (kathy.getRole() Role.BIG)

{ System.out.println(kathy.getName() + "isaBig.");
}

The effect of the reference assignment in line 3 is just like assigning references between
non-array variables and is traced in Figure 10-5. Assigning a reference from an array to
an appropriately named temporary variable can make code much more understandable.

Person kathy;

Steve, 1968/12/24, M, B :)

personsm
length| 4
0] Ken, 1997/8/7, M, L
[1] //<Beth, 1993/8/27, F, L)
[2] -]
3] /’\<Kath1een, 1979/5/4, F, B>

kathy |:|

kathy = persons[3];

persons m

length| 4
(9]
(1]
[2]
(3]

Steve, 1968/12/24, M, B :>

D

1993/8/27, F, L

)

Ken, 1997/8/7, M, L

5

Beth,

)

Kathleen, 1979/5/4, F, B:>

Eﬁ

kathy

References stored in an array may also be passed as arguments. For example, Kathleen and
Beth could be paired as Big and Little Sisters with the following sequence of statements:

// Pair Kathleen and Beth

Person kathy = persons[3];
Person beth = persons[2];
kathy.pairWith(beth);

SAVHIY ONIS) 10T |

CHAPTER 10 | ARRAYS |

However, because elements of an array can be used just like a regular variable, we
could also pair Kathleen and Beth this way:

// Pair Kathleen and Beth
persons[3].pairWith(persons[2]);

Finally, we can also assign a reference to an array element. For example, suppose
Kathleen is replaced by her friend Claire. The following code constructs an object to
represent Claire and then replaces the reference to Kathleen’s object with a reference to
Claire’s object.

new Person/("Claire", new DateTime(1981,4,14),
Gender .FEMALE, Role.BIG);

Person c =

persons[3] = c;

This code fragment is traced in Figure 10-6.

Person c =

length| 4
[9]
[1]
[2]

N

c E/\<Claire, 1981/4/14, F, B>
persons[3] = c;

persons m

length| 4
[0]
(1]
[2]

Bl —

~— 1

new Person(...);

Steve, 1968/12/24, M, B

\

N NANDY

Ken, 1997/8/7, M, L

Beth, 1993/8/27, F, L

|

Kathleen, 1979/5/4, F, B:)

]

Steve, 1968/12/24, M, B

)\

NN\

Ken, 1997/8/7, M, L

Beth, 1993/8/27, F, L

L

<:Kathleen, 1979/5/4, F, B:)

c Claire, 1981/4/14, F, B:)

The object modeling Kathleen will be garbage collected unless another variable is ref-

erencing it.

KEY IDEA

The golden rule for
arrays: Do unto an
array element as you
would do unto a
variable of the

same type.

(figure 10-6)

Tracing the assignment of
a reference into an array
element

LOOKING BACK

When an object has
no references to it,
the resources it uses
are recycled. See
Section 8.2.3.

FIND THE CODE

chio/bbbs/

10.1.3 Swapping Array Elements

We can easily exchange, or swap, two elements in an array. For example, suppose we
wanted to switch the places of Ken and Beth within the array. A temporary variable is
needed to store a reference to one of the elements while the swap is taking place. A
method to perform a swap follows. It takes two arguments, the indices of the two ele-
ments to swap. Note that we are now assuming that persons is an instance variable.

class BigBroBigSis extends Object
{ ... persons ...

/** Swap the person object at index a with the object at index b. */

public void swap(int a, int b)

{ Person temp = this.persons[a];
this.persons[a] = this.persons[b];
this.persons[b] = temp;

}

After the swap method finishes executing, the temporary variable temp will cease to
exist. The object it referenced, however, is still referenced by one element in the array
and will not be garbage collected.

Figure 10-7 traces the execution of swap (1, 2).

SAVHIY ONIS) 10T |

CHAPTER 10 | ARRAYS |

{ Person temp = this.persons[a]l;

(figure 10-7)

temp Tracing swap (1, 2);the
parameter a has the value
ersons Z 'y P Steve, 1968/12/24, M, B
P erson] 1 and b has the value 2
length| 4
Ken,

(0]

1997/8/7, M, L)

[1] {Beth, 1993/8/27, F, L

(2]

this.persons[a] = this.persons[b];

temp

3] //\<Kathleen, 1979/5/4, F, B)
|

persons m

Steve,

1968/12/24, M, B

length| 4
[0]

Ken, 1997/8/7, M, L

[1] f><3eth,

1993/8/27, F, L

N NANDY

(2]

this.persons[b] = temp;

temp

3] //\<Kathleen, 1979/5/4, F, B>
—

persons m

Steve,

1968/12/24, M, B

length| 4
[0]

Ken,

Be

1| =
U 4

th, 1993/8/27, F, L

1997/8/7, M, L:)

(2]

// After the swap method finishes

[3] //\<Kathleen, 1979/5/4, F, B)

1968/12/24, M, B

persons m/{Steve !

Ken, 1997/8/7, M, L

length| 4
[0]
[1] A Be

th, 1993/8/27, F, L

N NANDY

(2]

Bl —)

Kathleen, 1979/5/4, F, B:)

KEY IDEA

Arrays may be
indexed with
variables.

J PATTERN

Process All Elements

KEY IDEA

The number of
elements in an array
can be found with
.length.

KEY IDEA

The last index is one
less than the length
of the array.

10.1.4 Processing All the Elements in an Array

Accessing an element of an array using a number may not seem particularly helpful. We
could, after all, simply declare many variables that just have a number in each name:

Person person00;
Person person0l;
Person person02;

But consider printing the name of each person in the list. Without an array, we would
need statements for each named variable:

System.out.println(person00.getName());
System.out.println(personOl.getName());
System.out.println(person02.getName());

If the list contained 1,000 people, the method to print their names would have about
1,000 lines. What a pain!

Fortunately, an array’s index may be a variable—or any other expression that evaluates
to an integer. This is where the power of arrays really becomes apparent. By putting the
println statement inside a loop that increments a variable index, we can print the
entire array with only three lines of code—no matter how many elements are in it.

// Print the the name of every person in the array.

for (int i = 0; i < this.persons.length; i++)

{ System.out.println(this.persons[i].getName());
}

One item of note in this code fragment is the test in the for loop. The length of an
array can always be found with the array’s public final instance variable, length. If
the array is as illustrated in Figure 10-4, this.persons.length will return 8, the
number of elements in the array. The index, i, takes values starting with 0 and ending
with 7, one less than the array’s length. The length of the array is 8 but the index of the
last element is one less, 7. This is surely one of the most confusing aspects of arrays for
beginning programmers.

So far we have encountered three different mechanisms to find the number of elements
in a collection. Arrays use the public instance variable, length. The number of char-
acters in a string is found with a method, length (). Finally, Java’s collection classes
such as ArrayList and HashMap also use a method to find the number of elements,
but it has a different name, size().

Another task that uses a loop to access each element in turn is to calculate the average
age of the people in the array. For this task, we will use a variable to accumulate the
ages while we loop through the array. After we have added all the ages, we’ll divide by
the length of the array to find the average age.

SAVENY ONIS[) 10T

CHAPTER 10 | ARRAYS |

/** Calculate the average age of persons in the array. */
public double calcAverageAge()
{ int sumAges = 0;
for (int i = 0; i < this.persons.length; i++)
{ Person p = this.persons[i];
sumAges = sumAges + p.getAge();

}
return (double)sumAges/this.persons.length;

}

The variable sumAges has the role of a gatherer: It gathers all the individual ages
together. That value is then used to find the average age.

The loop controlling the index, i, is exactly the same in calcAverageAge as it was in
the example to print all the names. This looping idiom—starting the index at 0 and
incrementing by one as long as it is less than the length of the array—is extremely com-
mon when using arrays. Using it should become an automatic response for every pro-
grammer confronted with processing all the elements in an array.

Using the foreach Loop

You may remember that processing each element was also a common activity when
using the collection classes, such as ArrayList and HashSet. In that situation, we
used the foreach loop introduced with Java 1.5. The foreach loop also works with
arrays. The following loop is equivalent to the one used in calcAverageAge, shown
earlier.

for (Person p : this.persons)
{ sumAges = sumAges + p.getAge();
}

The foreach loop is a generalized loop designed for use with unordered data structures
such as maps and trees, for which asking for element 7 makes no sense. Hence, a foreach
loop has no index. Instead, one element from the collection is provided for each iteration
of the loop until all of the elements have been processed.

Programmers should be familiar with both looping styles. To emphasize this, we’ll
alternate between the two.

10.1.5 Processing Matching Elements

The method just written, calcAverageAge(), does not seem nearly as useful as a
method to find the average age of only the littles or only the bigs. In the previous exam-
ple, we added the age of every element in the array. To find the average age of only the

FIND THE CODE

chio/bbbs/

PATTERN &

Process All Elements

littles, we want to include the ages only if the person is, in fact, a little. This logic is
shown in the following pseudocode:

for each person in the array
PATTERN { if (the person is a liffle)
. { include this person in the average
Process Matching)
Elements }
return qQverage
By adding the if statement inside the loop, we restrict its effects to only those elements
that match the test. We process the matching elements. Notice that this pattern is very
similar to the Process All Elements pattern.
This pseudocode translates to Java as follows:
FIND THE CODE /** Find the average age of the "littles". */
public double getAverageLittleAge()
chio/bbbs/ { int sumAges = 0;

int numLittles = 0;
for (Person p : this.persons)
{ if (p.getRole() == Role.LITTLE)
{ sumAges = sumAges + p.getAge();
numLittles = numLittles + 1;
}
}

return (double) sumAges/numLittles;

}

LOOKING AHEAD Of course, by changing the test in the if statement, we change which objects we
We’ll learn howto ~ process. By changing the body of the if statement, we change how they are processed.

generalize these For example, the following code fragment prints all the “bigs” who have not been
methods with

paired with a “little.”

interfaces and
polymorphism in // Print the names of unpaired "bigs"
Chapter 12. for (int i = 0; i < this.persons.length; i++)

{ Person p = this.persons[i];
if (p.getRole() == Person.BIG && !p.isPaired())
{ System.out.println(p.getName());
}

}

10.1.6 Searching for a Specified Element

In one of our first examples we paired Beth, the person at index 2, with Kathleen, the
person at index 3. But when we’ve decided to pair Beth and Kathleen, how do we find
their positions in the array? We search for them.

SAVHIY ONIS) 10T |

CHAPTER 10 | ARRAYS |

Searching involves using some identifying information—such as a name, telephone number,

or government identification number—and finding the corresponding object in the array.
The identifying information is often called a key. If each key is unique, then at most one
object in the array will match the key. Government identification numbers usually identify
a unique person. On the other hand, names and telephone numbers may match several dif-
ferent people. In that case, a search generally returns the first object that matches.

In most cases we don’t know that our search will be successful. It might be that no
object matches the key. Therefore, we need a way to indicate failure. This is usually
done by returning a special value such as null or -1. We can use null when the
search method returns the object that was found and -1 when the search method
returns the array index where the object was found. We use null and -1 for this role
because null is never a legal reference to an object and -1 is never a legal array index.

The easiest way to write a search method is a variation of the Process Matching
Elements pattern—except that the “processing” is to exit the loop and return the
answer. Suppose we are looking for a person using their name as a key. The logic is
shown in the following pseudocode:

for each person in the array

{ if (the person’s name matches the key)
; exit the loop and return the person PATTERN g
} Linear Search

return null

We can exit the loop when we find the right person with the return statement. If we
examine all of the people in the array and do not find one matching the key, the code
will exit the loop at the bottom and return null, indicating the search failed.

In Java, this can be implemented as the method shown in Listing 10-1.

FIND THE CODE
Listing 10-1: Searching an array
chio/bbbs/

1 /** Search for the first person object matching the given name.
2 * @param name The name of the person to find (the key).

3 * @return The first matching person object; null if there is none. */ PATTERN
4 public Person search(String name)

5 { for (int i = 0; i < this.persons.length; i++)
6

7

8

9

\Y

A\

N

Linear Search

{ Person p = this.persons[i];
if (p.getName().equalsIgnoreCase(name))

{ return p; /I Success. Exit the loop and return the person found.
}

10 }

11 return null; // Failure.

12 }

The search method can also be written without the temporary variable p, as follows:

public Person search(String name)
{ for (int i = 0; i < this.persons.length; i++)
{ if (this.persons[i].getName().equalsIgnoreCase(name))

{ return this.persons[i]; /I Search succeeded.
}

}

return null; /I Search failed.

}

LOOKING BACK We can use the search method to pair Kathleen and Beth as follows:

The Prompt class
was discussed in
Section 9.4.2.

String bigName = Prompt.forString("Big's Name:");
Person big = this.search(bigName);

String littleName = Prompt.forString/('Little's Name:");
Person little = this.search(littleName);
big.pairWith(little); /I Dangerous code!

KEY IDEA The last line is marked as dangerous code because one or both of the searches may

Always confirma ~ have failed, in which case big or little will contain the value null. Then a
search was successful NullPointerException will be generated when the last line executes. The outcome
before proceeding. f 4 search should always be verified and failure handled. The following is better code

because it checks that the searches were successful.

String bigName = Prompt.forString("Big's Name:");
Person big = this.search(bigName);
while (big == null)
{ System.out.println(bigName + "notfound.");
bigName = Prompt.forString("Big's Name:");
big = this.search(bigName);

}
/I Repeat the above to find the little.

big.pairWith(little); // Safe because both big and little have been found.

Another Approach to Searching
Many people think it is a bad idea to exit a loop early. They think that a line such as
the following is like a contract between the programmer and the reader.

for (int i = 0; i < this.persons.length; i++)

The contract says this code will execute one time for every person in the array. Returning
from the middle of the loop, like the search in Listing 10-1, breaks the contract.

SAVHIY ONIS) 10T |

CHAPTER 10 | ARRAYS |

A search algorithm that respects this view uses a while loop, which does not imply

that every element in the array will be visited. The core idea is to repeatedly increment
an index variable so that elements of the array are examined in turn. This is Step 1 of
the Four-Step Process for constructing a while loop. The loop stops (Step 2) when
either the end of the array is reached or the desired element is found, which ever comes
first. Therefore, the loop continues as long as we have not reached the end of the array
and we have not found the desired element. The loop is assembled (Step 3) with the
results of Steps 1 and 2. Finally, after the loop (Step 4), we need to determine the
answer and return it.

The logic is shown in the following pseudocode:

while (not afthe end of the array and matching object not found)
{ increment index to examine the next object

}

if (atthe end of the array)

{ the search failed; return null

} else

{ the search succeeded; return the object

}

Making this pseudocode concrete to search for a person results in Listing 10-2.

Listing 10-2: Another approach to searching an array

1 /** Search for the first person object matching the given name.
2 * @param name The name of the person to find (the key). */
3 public Person searchAlt(String name)

4 { int i = 0;

5 while (i < this.persons.length &&

6 !this.persons[i].getName().equalsIgnoreCase(name))
7 { i++;

8

9

10 if (i == this.persons.length)

11 { return null; /[Failure: got to the end without finding it.
12 } else

13 { return this.persons[i]; // Success.

14 }

5 }

LOOKING BACK

The Four-Step Process
for constructing a
loop is discussed in
Section 5.1.2.

PATTERN &

Linear Search

@IND THE CODE

chio/bbbs/

10.1.7 Finding an Extreme Element

An extreme element has the most of something or the least of something. It might be
the person with the most age (oldest person) or the least age (youngest person). In
other contexts, extreme elements might be the employee with the highest salary, the

SAVIYY ONIS) T°OT |

robot with the most things, the stock with the highest price/earnings ratio, or the name
appearing first in dictionary ordering.

The strategy is to step through the array using the Process All Elements pattern. As we
go, we’ll remember the element that best meets the criteria so far. For each new element
we examine, we’ll ask if it meets the criteria better than the one we’re remembering. If
it does, remember it instead. Expressed in pseudocode, this algorithm is:

remember the first element as the best seen so far
PATTERN for each remaining element in the array
{ if (the current element is befter than the best seen so far)
{ remember the current element as the best seen so far
}

f
/

A

Find an Extreme

}
return the best seen so far

Listing 10-3 applies this algorithm to the problem of finding the oldest person in the
array. It begins, in line 3, by remembering the first person in the array (at index 0) as the
oldest we’ve seen so far. This must be true, because we haven’t looked at anyone else.

In line 5, we start looking at the rest of the people in the array. Lines 6-8 check if the
current person matches the criteria better than oldestSoFar. If it does, the old value of
oldestSoFar is replaced with currentPerson. When the loop ends, oldestSoFar

FIND THE CODE
will contain the oldest person in the entire list.
chio/bbbs/ Listing 10-3: An example of finding an extreme element: the oldest person in the array

1 /** Find oldest person in the list. (Assumes there is at least one person in the array.) */
2 public Person findOldestPerson()
3 { Person oldestSoFar = this.persons[0];

for (Person currentPerson : this.persons)

{ if (currentPerson.getAge() > oldestSoFar.getAge())
{ oldestSoFar = currentPerson;
}

}
10 return oldestSoFar;

O 0ON U

CHAPTER 10 | ARRAYS

1}

What happens if two elements in the array meet the criteria equally well? What if two
people have the same age? The algorithm given here will return the first one found and
ignore anyone occurring later in the array who happens to be the same age. Changing
the > in line 6 to >= results in finding the oldest person who appears last.

Listing 10-3 returns the extreme element. Sometimes it is desirable to return the index
of that element instead. Implementing such a method requires replacing the foreach
loop with a regular for loop which makes the index explicit.

Java allows an empty array (an array with length zero), as shown in Figure 10-8.

LOOKING AHEAD

Problem 10.4 makes
the algorithm more
accurate. In

Section 10.3, we will
learn how to return
an array of people
who all meet the
same criteria.

(figure 10-8)

Empty array
persons [7]
(oo o)

The code in Listing 10-3 will fail on such an array with an
ArrayIndexOutOfBoundsException at line 3. Programmers should always be
aware of such a possibility and decide how to handle it. Options include the following:

» Document that calling the method with an empty array is an error. Check for
that situation and throw an exception, if required.

» Document the value the method will return if the array is empty. This would
typically be null if the method returns the extreme element and -1 if it
returns the index of the extreme element. Of course, a check must be made for
empty arrays so the correct value can be returned.

10.1.8 Sorting an Array

Collections of things are often easier to work with if they are sorted. Card players usu-
ally sort the collection of playing cards in their hands. A collection of words in a dic-
tionary is usually sorted in alphabetical order, as are names in a telephone book. A
collection of banking transactions are sorted by date on the bank statement.

Different algorithms can sort an array. Many of these algorithms have been given
names: Insertion Sort, Selection Sort, QuickSort, HeapSort, ShellSort, MergeSort, and
so on. Selection Sort is one of the easiest sorting algorithms to master. It builds on three
patterns we have already seen: Process All Elements, Find an Extreme, and Swap Two
Elements.

These sorting algorithms vary widely in their efficiency and in their ease of implemen-

(figure 10-9)

Dividing an array into

two parts 0

(figure 10-10)

tation. Insertion Sort and Selection Sort are easy to implement but slow to execute.
QuickSort, HeapSort, ShellSort, and MergeSort are all much, much faster for large
arrays but are more difficult to implement. They are typically included in a second year

Computer Science course.

Understanding Selection Sort

Diagrams help us understand how a sort works. For simplicity, our diagrams will use
an array of letters; when the array is sorted, the letters will be in alphabetical order.

The core idea of Selection Sort is to divide the array into two parts, as shown in
Figure 10-9: the part that is already sorted (shown with a dark background) and the
part that isn’t (shown with a white background).

At each step in the algorithm, we extend the sorted portion of the array by one ele-
ment. The next element to add to the sorted portion is the smallest element in the
unsorted portion of the array, D. It goes in the position currently occupied by G. These
two elements are highlighted in Figure 10-10.

Extending the array

(figure 10-11)

Swapping the two

elements; extending the
sorted part of the array 0

01 2 3 4 5 6

A 8 ¢ [HEDIE

The last part of this step is to swap these two elements, thus extending the sorted por-

tion of the array by one element. See Figure 10-11.

2 3 4 5 6
C

1
A8 0 HIFE

These two actions—finding the element that belongs in the next position and swapping
it with the one already there—are performed repeatedly until the entire array is sorted.
The algorithm begins with the sorted portion of the array being empty and the
unsorted portion consuming the entire array. Figure 10-12 shows the entire sorting
operation on a small array.

SAVENY ONIS[) 10T

CHAPTER 10 | ARRAYS |

~

(figure 10-12)

The initial, unsorted array. Sorting an array of letters

into alphabetical order

Find the element that belongs at index 0.

Swap elements at 0 and 2, extending sorted part.

Find the element that belongs at index 1.

Swap elements at 1 and 4, extending sorted part.

Find the element that belongs at index 2.

Swap elements at 2 and 6, extending sorted part.

Find the element that belongs at index 3.

Swap elements at 3 and 5, extending sorted part.

Find the element that belongs at index 4.

Swap elements at 4 and 4, extending sorted part.

Find the element that belongs at index 5.

> > > X rr > > > > > r ENEulEs]
W W W W @ w @ o oo [l

o 0o 0o o o o o EEEEaialis- g
o o o o o iR E2EE™
(Nl (MMM (M |(mMm|m |00 |0 | |00 | N
O (OO0l || |||l |OCO | Wv
a|lm|m|m || AT |olololoja|lo | o

Swap elements at 5 and 6, extending sorted part.

Two points in this example are worth elaboration. First, notice that when the element
in the next to last position (index 5) is swapped into position, the last element (index 6)
is automatically placed correctly as well. A moment’s thought will explain why: When
all the elements but the last are in their correct places, the last one must also be in its
correct place because there is no where else for it to be.

Second, when it was time to look for the element to place at index 4, the element just hap-
pened to already be there. In this case, we would not need to perform the swapping step.
We will anyway, however, because the “cure” of testing for this condition for every position
in the array is worse than the “disease” of performing the swap every once in a while.

Coding Selection Sort

Based on this example, we see that two actions are repeated: Find the element that
belongs in the next position and swap it with the one already there. These actions are
performed for each position in the array, in ascending order, except for the last one.
These observations yield the following pseudocode:

for each position in the array except the last ‘
{ find the element that should go in this position PATTERN I

swap that element with the element currently there
} Selection Sort

In this case the foreach loop is inappropriate because we will not be examining every
element in the array and because we need the index of the current element.

We can use this algorithm to sort our list of persons, but first we need to decide on the
order we want. Sorted by age? Sorted by name in alphabetical order? Something else?

FIND THE CODE

chio/bbbs/

PATTERN

Selection Sort

In the first example, we will sort the array by name. To do so, we’ll use the compareTo

method in the String class. If we have two String variables, s1 and s2, then
sl.compareTo(s2) returns 0 if the two strings are equal, a negative number if s1
comes before s2 in dictionary order, and a positive number if s1 comes after s2.

Listing 10-4 shows the Selection Sort algorithm coded in Java. Let’s look briefly at the
patterns it uses.

First, the sort method uses a very slight variation of the Process All Elements pattern.
The difference is that it processes all the elements except the last one. As noted earlier, by
the time all the other elements are in their place, the last one must be in its place as well.

Second, the helper method uses a variation of the Find an Extreme pattern. It differs
from the pattern in Section 10.1.7 in two ways:
» It finds the extreme in only the unsorted part of the array. We pass the index of
the first element it should consider as an argument.
» We are concerned with the position of the extreme element, not the element itself.
So our most-wanted holder variable in findExtreme, indexBestSoFar, stores
the index of the best Person object seen so far rather than a reference to
the object.

Third, the swap helper method is exactly as we saw before.

Listing 10-4: Implementing Selection Sort to sort an array of Person objects by name

1 public class BBBS extends Object
2 { ... persons ... /l an array of Person objects
3
4 /** Sort the list of persons in alphabetical order by name. */
5 public void sort()
6 { for (int firstUnsorted = 0;
7 firstUnsorted < this.persons.length-1;
8 firstUnsorted++)
9 { int extremeIndex = this.findExtreme(firstUnsorted);
10 this.swap(firstUnsorted, extremeIndex);
11 }
12 }
13
14 /** Find the extreme element in the unsorted portion of the array.
15 * @param indexToStart The smallest index in the unsorted portion of the array.
16 * @return The index of the extreme element. */
17 private int findExtreme(int indexToStart)
18 { int indexBestSoFar = indexToStart;

19 String nameBestSoFar =
20 this.persons[indexBestSoFar].getName();

SAVady ONIS) T°OT

CHAPTER 10 | ARRAYS |

Listing 10-4: Implementing Selection Sort to sort an array of Person objects by name (continued)

21 for (int i=indexToStart+l; i<this.persons.length; i++)
22 { String currPersonName = this.persons[i].getName();
23 if (currPersonName.compareTo(nameBestSoFar) < 0)
24 { indexBestSoFar = i;

25 nameBestSoFar = this.persons[i].getName();

26 }

27 }

28 return indexBestSoFar;

29}

30

31 /** Swap the elements at indices a and b. */

32 private void swap(int a, int b)

33 { Person temp = this.persons[a];

34 this.persons[a] = this.persons[b];

35 this.persons[b] = temp;

36 }

37 1}

Sorting without Helper Methods (optional)

Sorting is performed so frequently that a great deal of effort has been spent to make the
operation as fast as possible. The greatest gains in efficiency have been made by
employing different algorithms. QuickSort and HeapSort are among the best, but are
beyond the scope of this book.

Selection Sort can be made faster by eliminating the helper methods. Normally, eliminat-
ing helper methods just to speed up an algorithm is ot a good idea. In this case, however,
it may be justified because the algorithm is still relatively understandable. Listing 10-5
implements sortByAge as a single method. The age comparison is somewhat simpler
than comparing names and so some temporary variables have been eliminated as well.

Listing 10-5: Implementing Selection Sort in a single method to sort an array of Person objects
by age

public class BigBroBigSis extends Object
{ ... persons ... /I An array of Person objects.

/** Sort the persons array in increasing order by age. */
public void sortByAge()
{ for (int firstUnsorted=0;

AV W N B

LOOKING AHEAD

This code will be
made more flexible
and reusable in
Listing 12.18 in
Section 12.5.

FIND THE CODE

chio/bbbs/

/
PATTERN

Selection Sort

Listing 10-5: Implementing Selection Sort in a single method to sort an array of Person objects
by age (continued)

7 firstUnsorted<this.persons.length-1;
8 firstUnsorted++)
9 { // Find the index of the youngest unsorted person.
10 int extremeIndex = firstUnsorted;
11 for (int i = firstUnsorted + 1;
12 i < this.persons.length; i++)
13 { if (this.persons[i].getAge() <
14 this.persons[extremeIndex].getAge())
15 { extremeIndex = i;
16 }
17 }
18
19 /I Swap the youngest unsorted person with the person at firstUnsorted.
20 Person temp = this.persons[extremeIndex];
21 this.persons[extremeIndex] =
22 this.persons[firstUnsorted];
23 this.persons[firstUnsorted] = temp;
24 }
25 }
26 }

Sorting with the Java Library

Sorting an array is a very common activity and so it’s natural that the Java library pro-
vides support for it via the java.util.Arrays class. It provides methods to sort
arrays of all of the primitive types as well as arrays of objects.

The ordering of the primitive types is defined naturally by their values. Not so with
arrays of objects. When sorting an array of Person objects, for example, how does the
library sort know whether to sort by age or name or some other criteria?

The library sorts use two different approaches, both of which are explained in Chapter 12.
One approach depends on the objects being sorted implementing the Comparable inter-
face. This interface specifies a single method, compareTo, that compares two objects and
returns a number indicating which should come first. Classes that implement this interface
include String, DateTime, File, and enumerated types such as Direction. Sorting a
list of strings, for example, can be accomplished with the code in Listing 10-6.

The vast majority of the code, lines 11-19 and 25-28, is concerned with reading the
strings from the user and printing out the sorted list. The actual sorting is accom-
plished by a single line of code calling a method in the Java library (line 22).

SAVIYY ONIS) T°OT |

CHAPTER 10 | ARRAYS |

FIND THE CODE
Listing 10-6: Sorting strings read from the console @
.) . chio/librarySort/
1 import java.util.Arrays;
2 import java.util.Scanner;
3
4 /[** Sort the strings read from a file.
5
6 * @author Byron Weber Becker */
7 public class Sort
8 {
9 public static void main(String[] args)
10 { // Get the strings from the user.
11 Scanner in = new Scanner(System.in);
12 System.out.print ("How many strings: ") ;
13 int num = in.nextInt();
14 in.nextLine();
15
16 String[] strings = new String[num];
17 for (int 1 = 0; i < num; i++)
18 { strings[i] = in.nextLine();
19 }
20
21 /I Sort the strings.
22 Arrays.sort(strings);
23
24 /I Display the sorted list of strings.
25 System.out.println("The sorted strings:") ;
26 for (int i = 0; i < strings.length; i++)
27 { System.out.println(strings[i]);
28 }
29 }
30 }

The second approach to ordering objects is to pass the sort method the list to sort and

an object implementing the Comparator interface. This is the most flexible approach
and is discussed in Chapter 12.

10.1.9 Comparing Arrays and Files

Some beginning programmers have a hard time distinguishing an array from a file.
After all, both store an ordered collection of objects. Both often use algorithms that
process all of the objects in the collection.

KEY IDEA

Creating an array has
three steps:
declaration,

allocation, and
initialization.

So what’s the difference? The core difference is that a file stores the objects on a disk
drive or a related device. An array is stored in the computer’s memory.

One consequence is that accessing an array is much faster than accessing a file. The
disk drive holding your file has moving parts; waiting for them to move makes access-
ing a file slow. Memory, on the other hand, stores the array by arranging electrons in
its chips. Manipulating electrons is much faster.

Files are linear structures. When a file is stored on the disk, all the information is
placed into one long line. It’s processed by reading the first item of information from
the line, then the second, and so on. It’s possible to read an item from the middle of the
line, but you have to know exactly where to start in considerable detail. You need to
know not just that you want the 13274 item, but the exact length of the 131 items that
come before it.

Arrays, on the other hand, support random access naturally. If you want the 13204
item, use 131 as the index into the array (because arrays are indexed starting at 0).
Random access makes sorting an array easy but sorting a file difficult.

So why do we use files at all? Why not store everything in an array? Because storing
information on a disk drive is much cheaper and because disk drives retain the infor-
mation even when the power is off; memory does not.

Arrays and files are complementary. We often store information in files while we aren’t
working on it. When we begin to use the information, we use a program that loads the
information from the file into an array. After we’re done, usually as one of the last
things a program does, the information is written from the array back to the disk
where it waits until the next time we use it.

10.2 Creating an Array

So far we have assumed that the BBBS class contains an instance variable that is an
array of Person objects. In this section, we’ll see how to create such an array.

Briefly, creating an array has three steps: declaring the variable, allocating the memory,
and initializing each element in the array to a desired value. In some ways, creating an
array is like hosting a dinner party. The declaration states your intent to have an
array—like sending out invitations to your dinner party. When you allocate memory
you decide how many elements your array will have—like counting up the responses to
your invitation and setting that many dinner places at the table. Finally, initialization
puts a value in each element of the array—like seating one of your guests at each place
around your table. These three steps are illustrated in Figure 10-13.

AVady NV ONILV3Y) 20T |

CHAPTER 10 | ARRAYS |

Step 1: Declare
the array

persons|:|

Step 2: Allocate space

(figure 10-13)

Three steps in preparing
an array for use

persons
for the references
Person[]
length| 8
[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
N B
S s Il o peors steve, 1359/12724, v,)
Person|[]
ongth| 8 /—(Ken, 1997/8/7, M,\i}
[0] Beth, 1993/8/27, F, L
[1] Kathleen, 1979/5/4, F, B
[2] Roydyn, 1993/5/25, M, L)
{3} ﬂl{ala, 1992/2/16, F, L)
4
[5] / A11, 1985/7/12, M, B>
[6] .
| —] Zaki, 1980/9/2, F, B
) B

10.2.1 Declaration

Declaring an array is like declaring any other reference variable. A type such as
Person or Robot is required, followed by the name of the variable. If the array is an
instance variable, then an access modifier such as private is appropriate.

The only trick is knowing the type.
Person|] and the type for an array of
square brackets after the type of eleme
brackets as making the type plural. A
variable of type Person[] holds many

The type for an array of Person objects is KEY IDEA
Robot objects is Robot[]. Simply add a set of
nts the array will hold. You might think of the

variable of type Person holds one person. A

The type of an array is
the same as the type
of each element, but

with [] appended.
persons.

LOOKING AHEAD

In Chapter 12, we
will see that the
persons array can
also hold subclasses
of Person.

KEY IDEA

Use the new keyword
to set aside space for
a specific number of
elements.

KEY IDEA

An array may be
declared and
allocated in one
statement when you
know how many
elements it will hold.

With this background, we can replace the following code:

public class BBBS extends Object
{ ... persons ... /I An array of Person objects.
shown in the listings in Section 10.1 with the complete declaration:

public class BBBS extends Object

{ private Person[] persons; /I An array of Person objects.

The persons array can only hold Person objects.

10.2.2 Allocation

The declaration of an array does not create the array, but only a place to hold a refer-
ence to an array. See Step 1 in Figure 10-13. We also need to allocate the array object
itself, similar to constructing any other kind of object. See Step 2 in Figure 10-13.

The following code fragment constructs an array object, allocating space for eight ele-
ments. It uses the new keyword followed by the type of the elements the array will
store. In square brackets is the number of elements the array will be able to hold.

this.persons = new Person[8];

Of course, including a different number in place of the 8 would allocate space for a dif-
ferent number of elements. The 8 in this example can also be replaced with any expres-
sion that evaluates to an integer, including a simple variable or a complex calculation.
This calculation may, for example, be based on information obtained from a user, as
shown in the following code fragment:

public class BBBS extends Object
{ private Person[] persons;

private void createArray()

{ Scanner in = new Scanner(System.in);
System.out.print ("How many persons:";
int numPersons = in.nextInt();

this.persons = new Person[numPersons];

}

The programmer often knows how many elements will be in the array when the pro-
gram is written. In this case, the declaration and the allocation may be combined:

private Person[] persons = new Person[100];

AVIYY NV ONILVIY) <01

CHAPTER 10 | ARRAYS |

10.2.3 Initialization

The final step in creating an array is to initialize each element, as illustrated in Step 3
of Figure 10-13. The simplest approach is to call an appropriate constructor for each
element in the array. For example, a small array of Person objects could be initialized
like this:

this.persons[0] = new Person("Steve", "1968/12/24",
Gender .MALE, Role.BIG);
this.persons[1l] = new Person("Ken", "1997/8/7",
Gender .MALE, Role.LITTLE);
this.persons[2] = new Person/("Beth", "1993/8/27",
Gender .FEMALE, Role.LITTLE);

This approach works, but is impractical for a large number of elements. Array initial-
ization is often performed by reading information from a file and constructing an
object for each of the file’s records.

The main problem is knowing how many records are in the file. This information is
needed to allocate the correct number of elements for the array.

One approach is to simply count the records. The file is opened and the records are
read, counting each one. When the end of the file is reached, it is closed and then
opened again. The array is allocated using the count just obtained. The entire file is
then read a second time, storing each object in the array.

Listing 10-7 shows the constructor to the BBBS class in lines 14-36. The initialization
of the array takes place in the constructor. The relevant points are:
» The array is declared at line 10.
» In lines 18-24, the file is opened, every record is read and counted, and then
the file is closed.
» In line 27, the array is allocated using the count of the records in the file.
» In lines 30-33, the file is again opened and the records read. This time, how-
ever, the objects created with the data are stored in the array at line 32. The
file is closed again in line 34 after all of the records have been read.

Listing 10-7: Initializing an array from a file

1 import java.util.Scanner;

2

3 /** Alist of the "bigs" and "littles" associated with a Big Brother/Big Sister program.

4 * "Bigs" are the Big Brothers and Big Sisters; "littles" are the Little Brothers and Sisters
5 * they are (potentially) paired with.

6

7

* @author Byron Weber Becker */

LOOKING AHEAD

Reading objects from
a file was discussed in
Section 9.2.1.

FIND THE CODE

chio/bbbs/

Listing 10-7: Initializing an array from a file (continued)

8 public class BigBroBigSis extends Object

9 {

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
99

¥

private Person[] persons; /I the list of bigs and littles

/** Construct a new object by reading all the bigs and littles from a file.

* @param fileName the name of the file storing the information for bigs and littles */
public BigBroBigSis(String fileName)

{ super();

/I Count the number of Persons in the file.
int count = 0;
Scanner in = this.openFile(fileName);
while (in.hasNextLine())
{ Person p = new Person(in);
count++;

}

in.close();

/I Allocate an array to hold each object we read.
this.persons = new Person[count];

/I Read the data, storing a reference to each object in the array.
in = this.openFile(fileName);

for (int i = 0; i < count; i++)

{ this.persons[i] = new Person(in);

}

in.close();

One disadvantage of reading the file twice is inefficiency. Reading from a file is inher-

ently slow and it would be more efficient to avoid reading the entire file twice.

Another approach is to store the number of records as the first item in the file, as shown

in Figure 10-14. The constructor can simply read this data item and allocate the array.
The records can then be read and stored into the array the first time the file is read.

AVIYY NV ONILVIY) <01

CHAPTER 10 | ARRAYS |

5

Kenneth A Parsons
1997/8/7 M L

Beth A Reyburn
1993/8/27 F L
Kathleen A Waller
1979/5/4 F B
Roydyn A. Clayton
1993/5/25 M L
Christopher Aaron Fairles
1981/2/2 M B

A disadvantage of this approach is that the number of records must be kept accurate.
This may be hard to guarantee if the file is edited directly by users. However, it is not
difficult if the file is always created by a program.

Listing 10-8 shows a constructor using this approach. It could be substituted for the
constructor shown in Listing 10-7, provided the data file were changed to include the
number of records in the file.

Listing 10-8: Initializing an array when the data file contains the number of records

1 public BigBroBigSis(String fileName)

2 { super();

3 Scanner in = this.openFile(fileName);
4

5 /I Get the number of records in the file.

6 int count = in.nextInt();

7 in.nextLine();

8

9 /I Allocate an array to hold each record we read.
10 this.persons = new Person[count];

11
12 /I Read the data, storing a reference to each object in the array.
13 for (int i = 0; i < count; i++)
14 { this.persons[i] = new Person(in);
15 }
16 in.close();

(figure 10-14)

File with the number of
records stored as the first
data item

LOOKING AHEAD

An array that appears
to grow can also solve
this problem. See
Section 10.4.

LOOKING AHEAD

Problem 12.13
generalizes this
method with
interfaces and
polymorphism.

Array Initializers (optional)

Java provides a handy shortcut to initialize an array if you know its contents when you
write the program. Essentially, you place the array elements in a comma-separated list
between curly braces, as shown in the following example:

bbbs.persons = new Person]]
{ new Person("Byron", "1961/3/21",
Gender .MALE, Role.BIG),
new Person("Ann", "1960/12/3",
Gender .FEMALE, Role.BIG),
new Person("Luke", "1990/10/1",
Gender .MALE, Role.LITTLE),
new Person("Joel", "1994/2/28",
Gender .MALE, Role.LITTLE)
}i

Java will automatically create an array of the right length to hold all the elements
listed. In fact, if you try to specify the size yourself, the compiler will give you an error.

10.3 Passing and Returning Arrays

Like other reference variables, references to arrays can be passed to a method via para-
meters and returned from a method using the return keyword.

One common activity that demonstrates both passing and returning arrays is to extract
a subset from a larger array. For example, return an array of Person objects that con-
tains only “bigs” who are female. To make the method more versatile, we’ll pass the
desired gender and role as arguments. The method’s signature is as follows:

public Person[] extractSubset(Gender g, Role r)

The return type of Person[] indicates that the method will return a reference to an
array of Person objects.

To solve this problem, we need to create an appropriately sized array—which means
figuring out the size of the subset. Then we need to fill the array. In pseudocode, we can
state our tasks as follows:

size = count number of elements in the subset
subset = a new array to store size elements
fill subset with the appropriate objects

return subset

SAVENY ONINYNLIY ONY ONISSYJ €01

CHAPTER 10 | ARRAYS |

The first step, counting the size of the subset, is an application of the Process Matching
Elements pattern in which the process performed is simply counting. Its signature and
method documentation are as follows; implementing it is Problem 10.7.

/** Count the number of persons matching the given gender and role.

* @paramg The gender of persons to be included in the subset.

* @paramr The role of the persons to be included in the subset. */
private int countSubset(Gender g, Role r)

The second step, allocating a temporary array, illustrates that declaring and allocating
an array within a method is both possible and useful. As always, the access modifier,
such as private, is omitted when declaring a temporary variable.

Person[] subset = new Person[size];

The third step, filling the subset array, is the tricky one. We’ll pass the method the
gender and role of the Person objects desired, as well as a reference to the temporary
array. The method’s signature will be:

private void fillSubset(Person[] ss, Gender g, Role r)

Again, notice the type Person[]. The parameter variable ss will refer to an array of
Person objects. Like other references passed as parameters, ss will contain an alias to
subset; both references refer to the same array and both can be used to access and
change the contents of the array. The reference itself cannot be changed, but the thing
it refers to can be changed.

Inside the method, we’ll repeatedly find the next person object with the appropriate
gender and role, copying a reference to it into the next available space in the temporary
array. This will require two index variables, one to keep track of where we are in the
persons array and the other to track our position in the subset array.

Figure 10-15 shows the situation immediately after the first Person object has been
inserted into the subset. The index variable ssPos (“subset position”) gives the index
of the next available position in the subset array. The variable arrPos (“array posi-
tion”) gives the index of the next Person object to consider. The colored arrows show
Person objects that have yet to be copied.

PATTERN &

Process Matching
Elements

LOOKING AHEAD

Aliases were
discussed in
Section 8.2.2.

(figure 10-15)
5 persons Steve, 1968/12/24, M, B>
Filling the subset array, gﬁ /gﬂ
Person|[] Person[]

immediately after the first Susan, 1983/8/7, F, B
, length| 3 length| 8
Person object reference Beth, 1093/8777 . F_ T
. [0]| A [0]
has been copied to the m = Kathleen, 1979/5/4, F, B
subset array
(2] \\Lﬂ Roydyp. 1993/5/25. M T\
B1T™ Kala, 1992/2/16, F, L

SAVENY ONINYNLIY ONY ONISSYJ €01

ssPos [4] :
Ali, 1985/7/12, M, B
n [5]
il //—{Zaki, 1980/9/2, F, B>

71N
N

L/
arrPos

The code for the helper method is shown in lines 27-38 of Listing 10-9. Notice that
ssPos is only incremented when a new element is added to the subset (line 34) but that
arrPos is incremented each time a new Person object is considered (line 36).

The final step in the extractSubset method is to return a reference to the subset
array (line 13).

FIND THE CODE
Listing 10-9: Completed code for the extractSubset method
chio/bbbs/

1 public class BigBroBigSis extends Object
2 { private Person[] persons; /I The list of bigs and littles.
3
4 o
5
6 /** Extract a subset of all the persons who have the given gender and role.
7 * @param g The gender of all members of the subset.
8 * @paramr The role of all members of the subset. */
9 public Person[] extractSubset(Gender g, Role r)
10 { int ssSize = this.countSubset(g, r);
11 Person[] subset = new Person[ssSize];
12 this.fillSubset(subset, g, r);
13 return subset;
14 }
15
16 /** Count the number of persons matching the given gender and role.
17 * @param g The gender of persons to be counted.
18 * @param r The role of the persons to be counted. */
19 private int countSubset(Gender g, Role r)
20 { // to be completed as an exercise
21 }

CHAPTER 10 | ARRAYS |

Listing 10-9: Completed code for the extractSubset method (continued)

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

/** Fill the subset array with Person objects matching the given gender and role.
* @param subset The array to fill with elements belonging to the subset.
@param g The gender of persons to be included in the subset.
@param r The role of the persons to be included in the subset. */
private void fillSubset(Person[] ss, Gender g, Role r)
{ int ssPos = 0; /I position within the subset

int arrPos = 0; // position within the array

while (ssPos < ss.length)

{ Person p = this.persons[arrPos];

*

*

if (p.getGender() == g && p.getRole() == r)
{ ss[ssPos] = p;
ssPos++;
}
arrPos++;

Client code using the BBBS class could use the extractSubset method as follows:

Person[] femaleBigs = bbbs.extractSubset (Gender.FEMALE,
Role.BIG);

System.out.println("Female Bigs:");

for (Person p : femaleBigs)

{ System.out.println(p.getName());

}

Passing and returning arrays of information are useful techniques. For example, the

Big Brother/Big Sister project might have a reporting subsystem that could use such

techniques extensively. Imagine a suite of subset extraction methods that each return a

subset of a passed array. They could be put together in endless combinations. We could
have, for example, a query like this, in which each extract method takes a criterion
and an array as arguments:

Person[] ss = this.extract(Gender.MALE,
this.extract(Role.LITTLE,
this.extract(Interests.SPORTS,
this.persons)));
this.print(ss);

KEY IDEA

Allocate extra space
for the array. Use the
first elements to store
data. Keep the
number of elements
in use in another
variable.

(figure 10-16)

10.4 Dynamic Arrays

So far, the number of elements stored in our arrays has been fixed. We’ve neither added
elements nor removed them. To be truly useful, this must change. For example, in the Big
Brother/Big Sister program, we need a method to add a new person to the persons array:

/** Add another person to the array of Person objects.
* @param p The Person object to add. */
public void add(Person p)

To implement add, we must figure out how to “create” additional space in the array.
In this section, we’ll explore two approaches to this problem, and ultimately conclude
that the best solution uses features of both.

10.4.1 Partially Filled Arrays

The first approach uses a simple idea: Create an array with room to grow, if necessary.
This separates the notion of the size of the array (the number of elements it currently
stores) from the length of the array (the maximum number of elements it can store).
This requires an auxiliary variable that we usually name size. Such an array is usually
only partly filled, so we’ll call it a partially filled array.

We will adopt a convention that indices in the range 0..size-1 will hold the valid ele-
ments while indices size. .length-1 will be “empty.” This is illustrated in Figure 10-16.

length| 8

Beth, 1993/8/27, F, L

persons Steve, 1968/12/24, M B>
Partially filled array with . ’ i
four elements size[4 | (person[] / Ken, 1997/8/7, M@

Fl)} Kathleen, 1979/5/4, F, B)
[2]
(3]
[4] | null
[5]| null
[6] | null
[7]| null

L

SAVNY JIWYNAQ Y7701 |

CHAPTER 10 | ARRAYS |

The auxiliary variable, size, can be interpreted two ways. First, it can be interpreted
as the number of elements in the array that store valid data. This interpretation is use-
ful for the Process All Elements and related patterns. For example, to print all the
names in the partially filled persons array, we write

for (int i = 0; i < this.size; i++)
{ Person p = this.persons[i];

System.out.println(p.getName());
}

Notice the use of this.size rather than this.persons.length to control the
loop. If the array is as shown in Figure 10-16, using length would result in a
NullPointerException when the name for persons[4] is printed because p would
be null.

The other Process All Elements idiom, using the foreach loop, will not work with par-
tially filled arrays. Writing for (Person p : this.persons) is the same as writ-

ing for (int i = 0; i < this.persons.length; i++).

The second interpretation of size is as the first element of the “empty” portion of the
array. This interpretation is the natural one for the add method because it tells us
where to put the new element.

public void add(Person p)
{ this.persons[this.size] = p;
this.size++;

}

After a new element is added, the auxiliary variable must be incremented.

Of course, if the array is already full (size has the same value as persons.length),
the add method will fail with an ArrayIndexOutOfBoundsException. We will
investigate a solution to this problem shortly.

Inserting into a Sorted Array

If the array is already sorted and you want to keep it sorted, simply adding the new ele-
ment to the end isn’t good enough. One approach would be to add to the end and then
sort the entire array, but that is inefficient. A much better approach is to move elements
larger than the new element down in the array. The new element can then be inserted
in the resulting “hole.” These steps are shown in Figure 10-17.

KEY IDEA

size says how
many elements have
valid data.

KEY IDEA

The foreach loop
doesn’ t work for
patrtially filled arrays.

KEY IDEA

size also says where
the next element
should be added.

LOOKING AHEAD

Implementing this
algorithm is
Problem 10.8.

(figure 10-17)

Inserting a new element in
an array sorted by name

LOOKING AHEAD

Written Exercise 10.1
asks you to explain
why this step is
optional.

persons persons
sizelz| sizeE
Person[] /@ Person[] @
length| 8 length| 8 length| 8
] / @ o] / @] / @
His R ey NI R Oy Sl N IReR
Steve 3y Steve Steve
3] 31] 31| X
[4] | nu11 4V’ 4] ’
[5]| null [5]| null [5]| null
[6]| null [6]| null [6]| null
[7]| null Kathy [7]| null Kathy [7]| nu11 Kathy
p p
The original array containing Move references at the end of Insert the new element and
four Person objects the array down by one to make increment the auxiliary variable,
room for the new element size
Deletion

When deleting an element, we need to fill the “hole” left by the deleted element so that
all the valid array elements are kept at the beginning of the partially filled array and all
the unused space at the end. We’ll use the following algorithm:

d = find the index of the element to delete
fill d with another element from the array
decrement size, the auxiliary variable
assign null fo the element af size

The first step may be trivial if we are given the index of the element to delete. In other
situations, we may need to search for the element to find the index.

The second step varies, depending on whether a sorted order must be maintained. If
the array is unsorted, use the last element of the array to replace the element being
deleted. In a sorted array, the elements with indices larger than d all need to be moved
up one position in the array.

The third step recognizes that there is now one less element in the array.

The last step is not strictly necessary, however it is a good idea to assign null to the
element for two reasons. First, it can make debugging easier because accidentally
accessing an element in the unused portion of the partially filled array will generate a
NullPointerException, quickly informing us that we made a mistake. Second, it
may free an object for garbage collection, thereby reducing the memory required by
our program.

SAVNY JIWYNAQ Y7701 |

CHAPTER 10 | ARRAYS

Problems with Partially Filled Arrays

Unfortunately, partially filled arrays pose two significant problems. First, a partially
filled array solves the problem of adding elements to an array, but only up to a point.
There is still a limit. If the array is initially allocated to hold 500 elements, we can’t
insert 501. The last one just won’t fit. Using the algorithms discussed earlier will result
in an ArrayIndexOutOfBoundsException. If this abrupt ending to the program
isn’t desired, a check with a friendlier message can be made:

public void add(Person p)
{ if (this.size < this.persons.length)
{ this.persons[this.size] = p;
this.size++;
} else
{ // error message

}
}

One way of addressing the first problem is to allocate arrays with more space than we
think we’ll ever use. Unfortunately, this leads to the second problem with partially
filled arrays—wasting lots of memory. In addition, history is filled with programmers
who dramatically misjudged how much data would be poured into their programs. For
example, a program written to handle people associated with the local chapter of Big
Brothers/Big Sisters might be deployed nationally and suddenly need to deal with much
more information.

In spite of these two problems, partially filled arrays are a great solution where the
amount of data can be reliably estimated.

10.4.2 Resizing Arrays

A second approach to the problem of adding and deleting elements in an array is to
“change” the size of the array. Once an array is allocated, its size can’t be changed, but
we can allocate a new array with a different size and then copy the elements from the
old array to the new array. After updating the array’s reference to point to the new
array, it appears as though the array has simply grown. The new element can then be
added. These four steps are shown in Figure 10-18.

KEY IDEA

Arrays can’t change
size, but we can make
it appear as if they do.

(figure 10-18)

Reallocating an array

persons

larger

Person[]

length

5

(0]

null

(1]

null

(2]

null

(3]

null

— [[— [—

(4]

null
L/

p
Step 1: Allocate a new, larger array

persons

largera
—

Person[

=
o
I
=
=

length

(0]

1
5
/

(1]

(2]

(3]

;

(4]

null
L/

Pl 7]

Step 3: Reassign the array reference

persons

larger

Person[]

length

5

(0]

/

(1]

=N

(2]

(3]

(4]

null
L/

pl 7]

Steve

Beth

=N
o
o
=
=

Step 2: Copy the contents to the larger array

persons

Person[]

length

5

(0]

/

(1]

(2]

(3]

(4]

—

Step 4: Add the new element

p

§ e

Steve

Beth

The code to add a person to an unordered array is shown in Listing 10-10.

Listing 10-10: Adding a Person object to an unordered array

1
2
3
4
5
6
7
8
9

10
11

/** Add a new person to the persons array.

@param p

public class BBBS extends Object
{ private Person[] persons;

The new person to add. */

public void add(Person p)

{ // Step 1: Allocate a larger array.
Person[] larger

new Person[this.persons.length + 1];

SAVNY JIWYNAQ Y7701 |

CHAPTER 10 | ARRAYS |

Listing 10-10: Adding a Person object to an unordered array (continued)

12 // Step 2: Copy elements from the old array to the new, larger array.
13 for (int i = 0; i < this.persons.length; i++)
14 { this.larger[i] = this.persons[i];

15 }

16

17 /I Step 3: Reassign the array reference.

18 this.persons = larger;

19

20 // Step 4: Add the new element.

21 this.persons[this.persons.length-1] = p;

22 }

23 }

There is, however, a big disadvantage to this approach. Inserting many elements is very

time consuming because so much copying is required. For example, one test! produced
the data shown in Figure 10-19. The first column shows the number of insertions. The
second column shows the time, in seconds, required to make the insertions into an

array that grows by one with each insertion. The last column shows the number of sec-
onds required to insert the same data into a partially filled array.

(figure 10-19)

a) Time to insert into an array b) Graphing the time to insert data into an array

1 Using the code in examples/ch10/growArrayTest on a machine with a 2.8GHz Pentium 4
CPU and 1G of RAM running Windows XP and Java 5.

that grows . .
Insertions Grow PFA Insertmg elements in
10,000 0.4 0.000 800 an array
20,000 1.8 0.000 100 /
30,000 6.1 0.000 /
40,000 14.2 0.015 600 /
3 500
50,000 28.4 0.015 5 /
60,000 46.8 0.015 & 400
70,000 78.3 0.015 300 /
80,000 123.3 0.015 200 /
90,000 179.8 0.015 /
100
100,000 239.2 0.015
110,000 304.4 0.015 O —
120,000 389.6 0.015 S O N N
130,000 476.8 0.015 Insertions (1,000's)
140,000 623.7 0.015
150,000 779.8 0.015

KEY IDEA

Expandable, partially
filled arrays give the
best of both
approaches.

FIND THE CODE

chio/
bbbsPatrtiallyFilled/

The test clearly shows that the more insertions there are, the worse the problem is. For
example, the time taken to insert the first 10,000 items is less than half a second.
Inserting the last 10,000 items, however, requires more than three minutes.
Meanwhile, inserting 150,000 items into a partially filled array is so fast the com-
puter’s clock isn’t accurate enough to time it and on the graph it can’t be distinguished

from the x axis.

10.4.3 Combining Approaches

The disadvantages of a partially filled array are an upper limit on the number of inser-
tions and wasted space if some program executions use lots of data but most do not.
On the other hand, expanding the array with each insertion solves those two problems,
but introduces a performance problem.

Combining the two approaches addresses all three issues. The strategy is to use a par-
tially filled array. When it gets full, allocate a larger array. However, don’t increase the
array by only one element. Instead, double the size of the array. That typically wastes
some space, but not more than a factor of two. If that’s too much, the array could be
increased by 25% each time it is enlarged.

The same test as shown in Figure 10-19 takes only 0.047 seconds to insert 150,000
items—a little worse than a partially filled array that is initially allocated to hold
150,000 items, but not nearly as bad as growing the array by one each time.

The ArrayList class in the Java library uses exactly this approach. It is simply a par-
tially filled array that can grow when it gets full, wrapped in a class.

Listing 10-11 shows an add method for a partially filled array that is doubled when-
ever it becomes full. Note that this same method can be used in the constructor, elimi-
nating the need to count the number of items in the file (compare Listing 10-11 with
Listing 10-7).

Listing 10-11: Initializing and adding to an expandable, partially filled array

public class BigBroBigSis extends Object

{
private Person[] persons = new Person[1l]; // Listof bigs and littles.
private int size; /I Actual number of persons.

/** Construct a new object by reading all the bigs and littles from a file.

* @param fileName The name of the file storing the information for bigs and littles. */
public BigBroBigSis(String fileName)

{ super();

O 0ON V1 W N R

[Ty
(=]

SAVNY JIWYNAQ Y7701

CHAPTER 10 | ARRAYS |

Listing 10-11: Initializing and adding to an expandable, partially filled array (continued)

11 // Read the data, adding each person to the array

12 Scanner in = this.openFile(fileName);
13 while (in.hasNextLine())

14 { this.add(new Person(in));

15 }

16 in.close();

17 }

18

19 /** Add a person to the the list of persons. */

20 public void add(Person p)

21 { if (this.persons.length == this.size)
22 { /I The array is full -- grow it.

23 Person[] larger = new Person[this.size * 2];
24 for (int i = 0; i < this.size; i++)
25 { larger[i] = this.persons[i];

26 }

27 this.persons = larger;

28 }

29 this.persons[this.size] = p;

30 this.size++;

31 }

32 }

10.5 Arrays of Primitive Types

So far we have only discussed arrays of objects. Java also allows arrays of primitive types
such as integers, Booleans, and doubles. Arrays of primitives and arrays of objects share
many similarities. For example, declaring and allocating an array of four doubles bears a
striking resemblance to declaring and allocating an array of four Person objects:

Person[] persons = new Person[4];
double[] interests = new double[4];

In these examples, each element in persons is automatically initialized to null and
each element in interests is automatically initialized to 0. 0.

10.5.1 Using an Array of double

The Person class used in the Big Brother/Big Sister program defines four variables to
store potential interests of the participants: the extent to which they like sports, crafts,

games, and the outdoors. A value of 0.0 indicates they don’t have an interest in it at all

whereas a value of 1.0 indicates a very high interest. Before two people are paired,
their compatibility is determined with the getCompatibility query:

public double getCompatibility(Person p)

{ return (this.likesCrafts * p.likesCrafts
+ this.likesGames * p.likesGames
+ this.likesOutdoors * p.likesOutdoors
+ this.likesSports * p.likesSports)
/4.0;

}

Suppose it was determined that these four interests need to be supplemented with an
additional 16, for a total of 20 different interests. Using separate variables for each one
would be tedious; an array is a much better choice. Using an array, the Person class is
written as shown in Listing 10-12.

Listing 10-12: Using an array of doubles to represent interests

public class Person extends Object
{ ...
private static final int NUM_ INTERESTS = 20;
private double[] interests = new double[NUM INTERESTS];

1

2

3

4

5 000
6

7 public Person(Scanner in)
8

9

{ ...
// Read this person's interests from the file.

10 for (int i = 0; i < Person.NUM INTERESTS; i++)

11 { this.interests[i] = in.nextDouble();

12 }

13 000

14}

15

16 /** How compatible is this person with person p? A score of 0.0 means not at all

17 * compatible; 1.0 means extremely compatible. */

18 public double getCompatibility(Person p)
19 { double compat = 0.0;

20 for (int i = 0; i < Person.NUM INTERESTS; i++)

21 { compat = compat + this.interests[i] * p.interests[i];
22 }

23 return compat / Person.NUM_INTERESTS;

24 }

25 }

S3dA] IAILIWIIG 40 SAVddY GOl |

CHAPTER 10 | ARRAYS |

10.5.2 Meaningful Indices

So far the indices of our arrays have been just positions. They haven’t had any meaning
attached to them, though it is sometimes useful to do just that. Suppose, for example,
that we wanted to know the distribution of ages of the people participating in the Big
Brother/Big Sister program. That is, we want to know how many people are 10 years
old, how many are 11, and so on. We’ll assume no one is over 200 years old.

To solve this problem we can allocate an array named ageCounters with 200 ele-
ments. Each element will be a counter for a particular year. Which year? The year cor-
responding to the index. Thus, ageCounters[10] will be the number of 10 year-olds
and ageCounters[25] will be the number of 25 year-olds. We’ll have a counter for
everyone between 0 and 199 years old, inclusive.

The method shown in Listing 10-13, when added to the BigBroBigSis class, will

return a filled array giving the number of participants for each age. It could be used
like this:

int[] ages = bbbs.getAgeCounts();
for (int i 0; i < ages.length; i++)
{ if (ages[i] > 0)
{ System.out.println ("Thereare" + ages[i] +
" participants thatare" + i + "yearsold.");

}

Listing 10-13: A method to count the participants in each age group

public class BigBroBigSis extends Object
{ private Person[] persons;
private int size = 0;

/** Find the number of participants in each age group.
* @return A filled array where ali] is the number of people i years old. */

1

2

3

4

5 0oo
6

7

8

9 public int[] getAgeCounts()

10 { int[] ageCounters = new int[200];

11 for (int i = 0; i < this.size; i++)
12 { int age = this.persons[i].getAge();
13 ageCounters[age]++;

14 }

15 return ageCounters;

16 }

FIND THE CODE

chio/
bbbsPartiallyFilled/

In the last example, the indices naturally matched ages because both ranges start at 0.

Sometimes that isn’t the case. Consider a slight modification of this problem: Count
the number of coins in a collection by the year they were minted. Assume the oldest
coin was minted in 1850.

This problem could be solved by allocating an array with 1850 unused elements. A bet-
ter approach is to offset the indices by 1850, as shown in Listing 10-14. The crucial
lines are 5, 16, and 22. In line 5, the constants EARLIEST and LATEST are used to cal-
culate the actual number of elements or counters that are needed. This avoids the
unused elements at the beginning of the array. In line 16, the year entered by the user is
reduced by the appropriate amount so that it can be used as an index into the array. In
line 22, the reverse is done to map the index to the appropriate year.

Listing 10-14: Offsetting an index to start at zero

1 /** Count the number of coins minted in each year. */
2 public static void main(String[] args)
3 { int EARLIEST = 1850;
int LATEST = 2008;
int[] ages new int[LATEST - EARLIEST + 1];

Scanner in = new Scanner(System.in);

4
5
(3
7 // Count the coins.
8
9 while (true)

10 { System.out.print ("Enter a mintyearor -1 to exit:") ;
11 int yr = in.nextInt();

12 if (yr == -1)

13 { break;

14 }

15

16 ages[yr - EARLIEST]++;

17 }

18

19 // Print out the number of coins for each year.

20 for (int i = 0; i < ages.length; i++)

21 { System.out.println(ages[i] +

22 " coins minted in " + (i + EARLIEST));
23 }

S3dA] IAILIWIIG 40 SAVddY GOl |

CHAPTER 10 | ARRAYS |

10.6 Multi-Dimensional Arrays

Sometimes an array with more than one dimension is useful. For example, consider a
two-dimensional (2D) array recording the money given to Big Brothers/Big Sisters by
month and source. Figure 10-20 shows the source of the money across the top in cate-
gories such as United Way and government grants. Down the left side are the months.
At the intersection of each row and column is the amount of money received in a par-
ticular category in a particular month. For example, the cell in the column labeled
“Individual Donations” and in the row labeled “Apr” indicates that $4,833 were
received in April from individual donations.

United Corporate Individual Govt.

Way Donations Donations Fundraising Grants
Jan 0 3,000 6,915 0 15,500
Feb 0 2,125 4,606 0 5,500
Mar 0 2,000 5,448 0 5,500
Apr 0 3,000 4,833 13,983 15,500
May 20,569 2,000 6,091 0 5,500
Jun 0 8,000 4,867 0 5,500
Jul 0 3,000 4,196 0 15,500
Aug 0 2,550 4,736 0 5,500
Sep 0 2,000 4,305 0 5,500
Oct 0 3,000 5,286 32,254 15,500
Nov 0 2,000 6,834 0 5,500
Dec 9,351 2,000 7,459 0 5,500

Java uses one pair of brackets for each dimension of an array. The one-dimensional
arrays we used earlier in the chapter use one pair of brackets; the two-dimensional
array shown in Figure 10-20 uses two. Of course, a three-dimensional array uses three
pairs. The pattern continues for as many dimensions as you need.

int[][] income = new int[12][5]

The declaration on the left side of the equal sign specifies a 2D array where each cell
stores an integer. The allocation on the right side specifies that the array has 12 rows
and five columns.

Figure 10-20 is actually a bit misleading, for the following reasons:
» Column names like “Corporate Donations” and row names like “May” are
not directly associated with an array. The array itself is declared to store only
integers. It cannot store strings as column or row labels.

(figure 10-20)

Two-dimensional array
recording income by
source and month

KEY IDEA

The first pair of
brackets is for the
rows; the second pair
of brackets is for the
columns.

» Rows and columns must be accessed using integer indices.

» The variable name, income, actually refers to memory that holds the array; it

isn’t the array itself.

A more accurate picture of the array is shown in Figure 10-21 which takes all this into

account.

~

(figure 10-21) income
int[][]
More accurate
1 2

visualization of a two- 0 3 4
dimensional array 0 0 3,000 6,915 0 15,500
1 0 2,125 4,606 0 5,500

2 0 2,000 5,448 0 5,500

3 0 3,000 4,833 13,983 15,500

4 20,569 2,000 6,091 0 5,500

5 0 8,000 4,867 0 5,500

6 0 3,000 4,196 0 15,500

7 0 2,550 4,736 0 5,500

8 0 2,000 4,305 0 5,500

9 0 3,000 5,286 32,254 15,500

10 0 2,000 6,834 0 5,500

9,351 2,000 7,459 0 5,500

s

/

10.6.1 2D Array Algorithms

Most algorithms that process a 2D array use two nested loops. The outside loop gen-
erally specifies which row to access and the inside loop generally specifies the column.

A number of the following algorithms will display this general pattern. We say that

such an algorithm accesses the array in row-major order. Some algorithms access the

array in column-major order—the columns are indexed by the outer loop.

Printing Every Element

For example, to print the income array we could use a method like the one shown in

Listing 10-15.

SAVdy TYNOISNIWIG-ILIN 970t |

CHAPTER 10 | ARRAYS |

Listing 10-15: Printing a 2D array

public class BBBSIncome extends Object
{ //income by month (row) and source (column)
private int[][] income;

/** Print the income chart. */
public void printIncomeChart()

1
2
3
4
5
6
7
8
9 { for (int r = 0; r < this.income.length; r++)

10 { for (int ¢ = 0; c < this.income[r].length; c++)
11 { System.out.print(this.income[r][c] + "t");

12 }

13 System.out.println();

14 }

15 }

16 }

The inside loop, lines 10-12, prints one entire row each time it executes. The row it
prints is specified by the outer loop, row r. After the row is printed, line 13 ends the
current line of text and begins a new line. This process of printing a row is repeated for
each row specified by the outer loop.

Notice that the number of rows is found in line 9 with this.income.length while
the number of columns in a particular row is found in line 10 with this.
income[r].length. They differ because in Java a 2D array can be ragged—each row
may have its own length. We will see an example of this in Section 10.6.3.

Sum Every Element

The same nested looping pattern can be used to find the total income, from all sources,
for the entire year:

/** Calculate the total income for the year. */
public int getTotallIncome()
{ int total = 0;
for (int r = 0; r < this.income.length; r++)
{ for (int ¢ = 0; c < this.income[r].length; c++)
{ total = total + this.income[r][c];
}
}

return total;

@IND THE CODE

chio/income/

KEY IDEA

It’s possible to find
the number of rows in
a 2D array, as well

as the number of
columns in each row.

(figure 10-22)

Sample data file

Every time you need to examine every cell in a 2D array, you will likely use this nested
looping pattern.

Summing a Column

To find the total of the individual donations in one year, we need to sum column 2 in
the income array. This task requires a single loop because it is working in a single
dimension—moving down the column. Passing the column index as a parameter makes
the method more flexible:

/** Calculate the total income for a given category for the year.
* @param columnNum The index of the column containing the desired category. */
public int getTotalByCategory(int columnNum)
{ int total = 0;
for (int r = 0; r < this.income.length; r++)
{ total = total + this.income[r][columnNum];

}

return total;

10.6.2 Allocating and Initializing a 2D Array

As with a one-dimensional array, the declaration and allocation of the array can be
split. This means that determining the size of an array can be delayed until the program
is actually executing. For example, the array could be initialized from a file where the
first two numbers indicate the number of rows and columns, respectively.

The first five rows of such a data file are shown in Figure 10-22. The constructor
shown in Listing 10-16 shows how the array is allocated and then initialized using this
data. The size of the array is determined in lines 11 and 12. The array itself is allocated
using those sizes in line 16. Finally, the data is read and stored in the array using the by
now familiar double loop in lines 19-24. The calls to nextLine in lines 13 and 23 are
not strictly necessary because nextInt will read across line boundaries; however,
using nextLine shows where line endings are expected in the file and adds to the clar-
ity of the code.

12 5

0 3000 6915 0 15500
0 2125 4606 0 5500
0 2000 5448 0 5500
0 3000 4833 13983 15500

SAVdy TYNOISNIWIG-ILIN 970t |

CHAPTER 10 | ARRAYS |

Listing 10-16: Allocating and initializing a 2D array from a file

public class BBBSIncome extends Object
{
/I Income by month (row) and source (column).
private int[][] income;

* @param in The open file containing the data. */
public BBBSIncome(Scanner in)

1
2
3
4
5
6 /** Read the income data from a file.
7
8
9 { super();

10 /I Get the size of the array.

11 int rows = in.nextInt();

12 int cols = in.nextInt();

13 in.nextLine();

14

15 /I Allocate the array.

16 this.income = new int[rows][cols];

17

18 /I Fill the array.

19 for (int r = 0; r < this.income.length; r++)
20 { for (int ¢ = 0; c < this.income[r].length; c++)
21 { this.income[r][c] = in.nextInt();

22 }

23 in.nextLine();

24 }

25 }

26 }

10.6.3 Arrays of Arrays

The picture we’ve used so far of a 2D array having rows and columns is adequate in
most circumstances (see Figure 10-21). However, it doesn’t match reality and some-
times knowing all the details is useful.

In reality, a 2D array is an array of arrays, as illustrated in Figure 10-23. The variable
income actually refers to a one-dimensional array with 12 elements. Each element in
that 1D array refers to an array with five elements—a “row” of the 2D array.

We can now understand accessing the number of rows and columns in an array. When
we write this.income.length, it returns the length of the array holding the rows—
the number of rows in the 2D array. When we write this.income[r].length, it

FIND THE CODE

chio/income/

returns the length of the array stored in income[r]—the length of row r, or the num-

ber of columns in that row.

(figure 10-23)) |o|o|m|o|ow
income gla S
Viewing a 2D array as an —| ofw uo|o|ow
N - MRS S
array of arrays int[][] He BN o[gl=[=[s
‘: [%s) o [13)
length| 12/ SEEHBEEEE I
[0] N 2T —es
SS9 T ~=|F
= — | 9
3 of £ olo|l~|o|o
o o|lo| o
[4] = w| |88 R |2 |
— 0| N o
[5] — || = ~ —
—T 14 Els|al=lzl=ls —
61| —] —_ ' olo|w|o|o X,
== = o 8|a 2
[7] = -g — TS| — | “
81| —] 3= R
= s
o1 | £ o[glsl=ls
— [Te} o | 0 [Te}
[10] —|q~ sl |a -
— N\ =
[11] = =y ey ey
~— 1 E|s|g T |Llelo s
87 o
k5 = J

Sometimes, viewing a 2D array this way can work to our advantage in writing a pro-
gram, too. For example, suppose you want to swap row r and row s in the array
income. Rather than swap each element in row r with the corresponding element in
row s, we can write:

int[] temp = income[r];
income[r] = income[s];
income[s] = temp;

The first line declares a temporary variable to store a 1D array. Then the rows are
swapped by swapping their references. There is no equivalent way to swap columns.

Another way in which the array of arrays viewpoint can make a difference in our code
is a method that takes an entire row as a parameter. For example, we might already
have a simple utility method to sum a 1D array:

private int sum(int[] a)
{ int sum = 0;
for (int i = 0; i < a.length; i++)
{ sum = sum + a[i];
}

return sum;

SAVIYY TYNOISNIWIA-ILINN 9°0T

CHAPTER 10 | ARRAYS |

We can find the sum of the entire income array by passing sum a row at a time:

public int getTotalIncome()

{ int total = 0;
for (int r = 0; r < this.income.length; r++)
{ total = total + this.sum(this.income[r]);
}

return total;

}

A final use of the array-of-arrays view is when rows of the array have different lengths.
For example, Blaise Pascal explored the many properties of a pattern of numbers that
has come to be known as “Pascal’s Triangle.” The first five rows of the triangle are
shown in Figure 10-24. The first and last element of each row is 1. The elements in
between are the sum of two elements from the row before it.

(figure 10-24)

Pascal’s Triangle

A 2D array to store the first 10 rows of Pascal’s Triangle can be declared and allocated
with the following statement:

int[][] pascal = new int[10][];

Notice that the last pair of brackets is empty. This causes Java to allocate only one
dimension of the array. We can now allocate the rest of the array—with each row hav-
ing the appropriate length—with the following loop. It first allocates a 1D array the
correct length and then inserts it into the pascal array.

for (int r = 0; r < pascal.length; r++) LOOKING AHEAD
{ pascal[r] = new int[r+1];

See Problem 10.12.

// the array must still be initialized with the correct values!

This solution provides two interesting elements: First, because each row is just the right

length, no space is wasted. Second, the array can still be printed with our standard
nested loop, as follows:

NOILYWINY N9 Z'0T |

for (int r = 0; r < pascal.length; r++)

{ for (int ¢ = 0; c < pascal[r].length; c++)
{ System.out.print(pascal[r][c] + "t");
}
System.out.println();

10.7 GUI: Animation

There are several ways to perform animation in a graphical user interface. We've
already seen a primitive animation in the Thermometer example in Section 6.7.3. In
that example, the line representing the mercury in the thermometer was drawn several
times, each time a little longer than before.

In Chapter 9, we saw how to display a single image from a file. In this section, we’ll com-
bine that capability with arrays to display a simple animation. The principle of this ani-
mation approach is to store a sequence of images in an array. The image displayed is
switched from one image to the next quickly enough that it fools the eye into thinking
there is smooth motion. Our example will use the six images shown in Figure 10-25.
When shown repeatedly in quick succession, the eyes appear to roll. The images them-
selves were created with a graphics program that can create .gif files.

(figure 10-25)
Six images used in an @ @
animation N

Listing 10-17 and Listing 10-18 work together to show two happy face images, one
with the eyes rolling clockwise and the other with the eyes rolling counterclockwise.
One goes through the array forward as it displays the images; the other goes through
the array backward as it displays the images.

The main method for the program is shown in Listing 10-17 and follows our standard
pattern: Create the components we need (two instances of a custom component named
AnimateImage), put them in an instance of JPanel, and then put the panel in an
instance of JFrame.

CHAPTER 10 | ARRAYS

Lines 25-28 start two threads, one for each animation. Just like threads allowed robots

in Section 3.5.2 to move independently and simultaneously, these threads allow each
animation to run independently of the other.

FIND THE CODE
Listing 10-17: The main method for an animation @
. . . chio/animation/
1 1import javax.swing.*;
2
3 /** Create an animated image.
4 *
5 * @author Byron Weber Becker */
6 public class Main extends Object
7 {
8 public static void main(String[] args)
9 { // Create two animated components.
10 AnimateImage animl = new AnimateImage('img", 6, ".gif', 1);
11 AnimateImage anim2 = new AnimateImage('img", 6, "gif', -1);
12
13 /I Put the components in a panel and then in a frame.
14 JPanel contents = new JPanel();
15 contents.add(animl);
16 contents.add(anim2);
17
18 JFrame f = new JFrame ("Animations") ;
19 f.setContentPane(contents);
20 f.pack();
21 f.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE);
22 f.setVisible(true);
23
24 // Run each animation in its own thread.
25 Thread tl = new Thread(animl);
26 tl.start();
27 Thread t2 = new Thread(anim2);
28 t2.start();
29 }
30 }

The component that actually does the animation is shown in Listing 10-18. Its key fea-
tures are the following:
» An array to store the images comprising the animation is declared (line 10)
and initialized with the images (lines 28-31).
» An instance variable, currentImage, holds the array index of the image cur-
rently being displayed.

» A method overriding paintComponent paints the image indexed by

currentImage on the screen.

» A run method is required to implement the interface Runnable. When the
thread is started in the main method, this is the method that runs. It loops for-
ever. With each iteration, it advances currentImage to be either the next
image or the previous image, depending on the value stored in the instance
variable direction. After requesting that the system repaint the component
by calling repaint, the method sleeps for 0.10 seconds to give the user time
to see the new image.

FIND THE CODE
Listing 10-18: A component that shows images in sequence to produce an animation

chio/animation/

O 0ON OOV B> W N R

N N N R B R R R R R R O KB
N » OV ON OOV D> W N B O

N
W

24
25
26
27
28
29
30
31
32

import javax.swing.¥*;
import java.awt.*;

/** Instances of Animatelmage show a sequence of images to produce an animation.
* @author Byron Weber Becker */
public class AnimateImage extends JComponent

implements Runnable

private ImageIcon[] images;
private int currentImage = 0;
private int direction;

/** Construct a new animation component, loading all the images. Images are read from
* files whose names have three parts: a root string, a sequence number, and an extension.

*

* @param fileNameRoot The root of the image filenames.

* @param numlmages The number of images in the animation.

* @param extension The extension used for the images (e.g., .gif)

* @param dir 1 to animate going forward through the array; -1 to animate
* going backward through the array. */

public AnimateImage(String fileNameRoot, int numImages,
String extension, int dir)
{ super();
this.images = new ImageIcon[numImages];
this.direction = dir;

for (int i=0; i<numImages; i++)
{ String fileName = fileNameRoot + i + extension;
this.images[i] = new ImageIcon(fileName);

NOILYWINY N9 Z'0T |

CHAPTER 10 | ARRAYS

Listing 10-18: A component that shows images in sequence to produce an animation (continued)

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

this.setPreferredSize(new Dimension(
this.images[0].getIconWidth(),
this.images[0].getIconHeight()));

/** Paint the current image on the screen. */

public void paintComponent (Graphics g)

{ super.paintComponent(g);
Image img = this.images[this.currentImage].getImage();
g.drawImage(img, 0, 0, null);

/** Run the animation. */
public void run()
{ while (true)
{ // Select the next image and call for the system to repaint the component.
/I If this.dir is negative, the remainder operator doesn't work as desired. Add
// this.images.length to compensate.
this.currentImage = (this.currentImage + this.direction
+ this.images.length) % this.images.length;
this.repaint();

try

{ Thread.sleep(100); /I Use the sleep method in the Java library.
} catch (InterruptedException ex)

{// ignore

}

10.8 Patterns

Many patterns involve arrays. They include initialization and changing the size of an

array, as well as many algorithms. This section contains only a sampling of what could

be considered patterns in this chapter.

10.8.1 The Process All Elements Pattern

Name: Process All Elements

Context: You have a collection of values stored in an array and need to perform the
same operation on all of them.

Solution: Use a for loop to process each element of the array, one element with each
iteration of the loop. The following code template applies:

for («elementType» «elementName» : «arrayNamen)
{ «statements to process element»

}
For example, to print the names of all the elements in the persons array:

for (Person p : this.persons)
{ System.out.println(p.getName());
}

Consequences: Each element in the array is processed by the statements inside the loop.
If the array happens to be partially filled, the preceding form will cause a null pointer
exception. Then the alternate form, which uses an explicit index and an auxiliary vari-

able, should be used.

Related Patterns: The Process Matching Elements, Find an Extreme, Selection Sort,
and many other patterns are specializations of the Process All Elements pattern.

10.8.2 The Linear Search Pattern

Name: Linear Search

Context: You have an indexed collection and are interested in objects in the collection
that satisfy a particular property. You want to do one of the following tasks:

» determine whether an element satisfying the property exists in the collection
» determine the position of the first or last element in the collection that satisfies
the property

» retrieve the first or last element in the collection that satisfies the property

Solution: Write a method that takes the criteria that identify the desired element as one
or more parameters. Use the Process All Elements pattern to test each element of the
array against the criteria. An element satisfying them can be saved and returned after
the loop, or more efficiently, returned as soon as it is found. The following code tem-
plate uses the early return approach and assumes a partially filled array.

SNd3llvd Q01

CHAPTER 10 | ARRAYS

public «typeOfElement» «methodName» («type» «criterianr)
{ for (int i = 0; i < «auxVarn»; i++)
{ «typeOfElement» «elem» = «arrayNamen»[i];
if («elem» satisfies «criterian)
{ return «elemn»;
}
}

return «failureValuen;

}

This basic pattern has many variations. Some of the differences are whether the array
is partially filled, whether the element is guaranteed to be found, and whether you
want to know whether such an element exists, its position, or the element itself.

Many people prefer to use a while loop instead of a for loop. In that case, use the fol-
lowing variant of the pattern. The while loop depends on short circuit evaluation to
stop the loop when the element is not found. For this to work, the test for the index
being in bounds must be first.

public «typeOfElement» «methodName» («type» «criterianr)
{ int 1 = 0;
while (i < «auxVar» &&
! («varrayName» [1] safisfies «criterian))

{ i++;

}

if (i == «auxVar») { return «failureValuen»; }
else { return «arrayName»[i]; }

}

Consequences: The desired element is either found and returned, or a designated
«failureValue» is returned. If the array contains objects, the «failurevalue» is
null. If the array contains primitive values, the failure value must be chosen carefully
to avoid all valid values that could be stored in the array. If no such value exists, another
technique must be used such as setting an instance variable as an error flag, returning an
object that contains the primitive value or is null, or throwing an exception.

Related Patterns: Some variations of this pattern are similar to the Process All Elements
pattern.

10.9 Summary and Concept Map

This chapter has focused on arrays, a fundamental programming structure for storing
multiple values using a single name, with individual values referenced using an integer
index. Arrays are closely related to collection classes such as ArrayList. An array
should be used when efficiency matters or when more precise control over the size of
the array is desired.

Many important algorithms apply to collections that are stored in an array. Examples
include Process All Elements, Find an Extreme, Search, and Sort.

allocating

initializing
elements

multiple
dimensions

€lg as
Ith
. an
change size »
auxiliary

10.10 Problem Set

{
(e

Written Exercises

10.1 In Section 10.4.1, it was noted that assigning null to an unused element after a
deletion from a partially filled array is not strictly necessary. Explain why a pro-
gram should work as implemented without that step. Drawing pictures may help.

10.2 Consider the code shown in Section 10.6.3 that swaps two rows of a 2D array.
a. Draw four diagrams, each one similar to Figure 10-23, that trace the three

lines of code. Assume the array has five rows with three columns each and
that r is one and s is three.

13 W31d0d4 or'ol

CHAPTER 10 | ARRAYS

b. Write pseudocode for a method that swaps two rows by swapping individ-
ual elements rather than entire rows.

10.3 Write patterns, in the same style as Section 10.8, for the following:

a. Declaring, allocating, and initializing a filled array where the initial values
are read from a file

b. Finding an extreme element
c. Deleting an element from a specified index in an unsorted, partially filled array
d. Inserting an element into a sorted, partially filled array

e. Enlarging a partially filled array

Programming Exercises

10.4 In Section 10.1.7, we found the oldest person by comparing the ages of everyone
in the array. This, however, is accurate only to the nearest year. On 364 days of
the year, a person born April 1, 1987 and another born April 2, 1987 will be the
same number of years old—yet one is clearly older than the other. Rewrite the
findOldestPerson method to compare their birth dates rather than their ages.
With this modification, two people must be born on exactly the same day and year
to be considered equally old. You will need to add a method to the Person class.

10.5 Write a method named split. This method is passed a Scanner object. It
reads all of the tokens up to the end of the file, returning them as a filled array
of strings (no blanks or nulls). Do not use the split method in the String
class nor any of the collection classes.

10.6 The package becker.xtras.hangman includes classes implementing the
game of Hangman. Figure 7-13 has an image of the user interface. Extend
SampleHangman. Your new constructor should read a file of phrases that you
create and store them in an array. Override the newGame () method to choose a
random phrase from the array and then call the other newGame method with
the chosen phrase. Create a main method, as shown in the package overview,
to run your program.

10.7 Complete the countSubset helper method discussed in Section 10.3.

10.8 Write a method named add that adds a new Person object into a sorted, par-
tially filled array. You may find Figure 10-17 helpful for this.

10.9 Implement a method with the signature void delete(int d) that deletes the
element at index d from a partially filled array.

a. Assume the partially filled array is unsorted.
b. Assume the array is sorted.

10.10 Write a program that reads a series of daily high temperatures from a file. Print
out the number of days that each high was achieved. If you normally think of
temperatures in degrees Celsius, assume the temperatures fall between -40° and
50°. If you normally think in Fahrenheit, assume they fall between -40° and 110°.

10.11 Write methods in the BBBSIncome class to:

a. Find the month with the largest income in a given category.
b. Find the category with the largest income for a given month.

c. Find the month with the largest total income from all sources.

10.12 Review Pascal’s Triangle and the code after Figure 10-24 to allocate an

array for it.

a. Draw an object diagram, similar to Figure 10-23, showing Pascal’s Triangle
as an array of arrays.

b. Complete the initialization code. Print the triangle using the algorithm in
Listing 10-15 to verify the correctness of your code.

c. Write a method, printFormatted, that prints an array representing
Pascal’s Triangle with appropriate spacing. Your output will be spaced simi-
larly to Figure 10-24, but will not display the background grid. You may
find the printf method useful; see Section 7.2.4.

d. Write a method, rowsSumToPowers. It verifies that the sum of the num-
bers in each row is 2, where # is the row number. That is, the sum of row 0
is 29 (or 1) and the sum of row 1 is 2! (or 2). Use the pow method in the
Math class to calculate 2”.

e. Write a method, naturalNumbers. It should verify that the elements next
to the end of each row except the first, when taken in sequence, are the nat-
ural numbers. For example, the 2" element in row 1 is 1. The second ele-
ment in row 2 is 2, and the second element in row 3 is 3. The same is true
for the element next to the end of each row. Return true if the property
holds; false otherwise.

Programming Projects

10.13 Write a program implementing a robot bucket brigade. The bucket brigade con-

sists of some number of RobotSEs positioned on consecutive intersections. There
are a number of Thing objects (buckets) on the same intersection as the first
robot in the brigade. When the program executes, the first robot will pick up one
Thing and move it to the next robot’s intersection, put it down, and return to its
original position. The next robot will then move the Thing one more position
down the line, and so on. When the brigade is finished, all the Things will be at
the other end of the line of robots, one intersection beyond the last robot.

10.14 Implement a class named SortTest. It asks the user for an array size, a file-

name, and a sorting algorithm. It then allocates an array of strings the given
length and fills it by reading tokens from the file. If the file doesn’t have
enough tokens, close it and begin reading again from the beginning. When the
array is filled, sort it using either Selection Sort or the sort method imple-
mented in java.util.Arrays (an implementation of MergeSort). Use the

13 W31d0d4 or'ol

CHAPTER 10 | ARRAYS

program to construct a graph for each algorithm comparing the number of

tokens on the x axis with the time to sort on the y axis. What conclusions can
you draw about the performance of the two algorithms? (Hint: A good source
for tokens is a book such as Moby Dick, available from www.gutenberg.org.)

10.15 The user interface for graphing mathematical functions presented in Problem 7.14
is also capable of graphing polynomial functions. Polynomials have 7 terms added
together. Each term has the form ap, where g, is called the coefficient. The overall
form of a polynomial is @ x" + a, ,x™1 + ... + a,x°. Write a class named
PolyFunc that extends Object and implements IPolynomialFunction. Write
another class, Main, that includes a main method to run the program.

a. Use PolyFunc to graph a,x* + a;x? + a,x? + a;x + a,, using 2,=0.5, a;=
-0.75, a,=0.1, a,=0.0, and a,=-1.0.

b. Without changing PolyFunc in any way, graph
axb+ap’ +axt+ax’ vaxt+ax+a,
(You may, however, change your main method.) Choose your own coefficients.

10.16 Explore the documentation for becker.xtras.imageTransformation. This
package provides a graphical user interface for a program to transform images by
rotating, cropping, brightening, darkening, stretching, and so on. See Figure 10-26.
The actual transformations are provided by a class implementing the
ITransformations interface.

=10l x|

File Transforms

Darken|
Brighten
Invert
FlipX
FlipY
Rotate
Scale 50%
Mirror
Blur
Reset

Write a class named Transformer that implements ITransformations
and provides a reset function to reset the image to the original image that
was provided as a parameter to setPixels. (Hint: Assigning references

(figure 10-26)

Image transformation
graphical user interface

will not be enough. You need to actually copy the array.) Add code to imple-

ment the following transformations:
a. “Darken” divides the intensity of each pixel by two.

b. “Brighten” multiplies the intensity of each pixel by two; pixels that have a
resulting value larger than 255 are set to 255.

c. “Invert” makes the light pixels dark and the dark pixels light.

(figure 10-27)

Jotto’s graphical user
interface

j.

. “FlipX” turns the picture upside down.

“FlipY” reverses the left and right sides of the image.

“FlipDiag” reverses the lower left and upper right corners.

. “Rotate” turns the image % turn to the left (be careful that you don’t inad-

vertently implement “FlipDiag”).

. “Scale50” removes every other row and every other column from the image,

making the result .25 times the size of the original.

“Mirror” makes an image that is twice as wide as the original image, where
the left half contains the original and the right side contains a mirror image.

“Blur” sets each pixel to the average of its neighbors.

10.17 Explore the documentation for the package becker.xtras. jotto. A graphi-

cal user interface, as shown in Figure 10-27, is provided in the package.

£
E

TEEA

LR o - =~ i<

]
i
0]
B
[

L paeEE
AL Epama
DR REaEa

SN omama

CURDE g
inpET -

. Write a main method, as described in the package overview, so that you can

play a game of Jotto using the supplied SampleWordList and
SampleGuessEvaluator classes together with the supplied user interface.

. Write a class named WordList that implements the interface IWordList.

Modify your main method to run the program using your new class.
Implement it using a completely filled array.

. Write a class named WordList that implements the interface IWordList.

Modify your main method to run the program using your new class.
Implement it using a partially filled array that includes an addWord method
which enlarges the array as required.

13 W31d0d4 or'ol

CHAPTER 10 | ARRAYS |

d. Write a class named HintContainsLetter that extends Hint and con-
tains the code shown in the documentation for the Hint class. Modify your
main method so you can play the game and use your new hint mechanism.

e. Write a class named HintExcludesLetter. It will be similar to the class
written in part (d) except that 1sOK will return true when the specified
word does not contain the given character.

f. Write a class named HintContainsLetters. It will extend Hint and its
is0K method will return true if the specified word contains all of the letters
obtained with the getLetters method in the THintData object passed as
a parameter.

g. Write a class named HintExcludesLetters. It will extend Hint and its
is0K method will return true if the specified word does not contain any of
the letters obtained with the getLetters method in the IHintData
object passed as a parameter.

h. Write a class named HintContains3Letters. It will extend Hint and its
is0K method will return true when the specified word contains at least 3 of
the letters obtained with the getLetters method in the IHintData
object passed as a parameter.

i. Generalize the class described in part (h) so that the number of letters can be
specified when the object is constructed. Name the class
HintContainsNLetters.

10.18 Explore the documentation for the package becker.xtras.marks. Write a
class named Marks that implements the interface IMarks. Write another class
named Main that contains a main method as shown in the documentation. The
result should appear similar to Figure 10-28.

Bmarks e R (figure 10-28)

[TS (AT Graphical user interface
A?]t:tgent [m 51 A2 le AR = ijei‘tzl ﬂ\\reragse2 Ay Eles..gl A| for a spreadsheet storing
Marina [<]u] G4 G4 61 G2 G4 marks orgrades
Huan 69 61 74 60 66 [l
Grant 68 B9 68 B9 68 B9
Ryan 83 83 94 51 87 82
Average 67 G5 G4 G5
Max g7 ar 94 9
Min 43 42 3z 33 -
| open.. || save.. || addstudent || addassignment |

10.19 Consider Table 10-1. It gives distances between pairs of cities, similar to the
charts found in some road atlases. Write a class, Distances, that has an
instance variable referring to a 2D array storing the distances. Initialize the
array from a file.

(table 10-1)

Distances in kilometers
between cities in southern
Ontario

Kitchener | London | Stratford | Toronto
Kitchener o 110 45 107
London 110 o 61 194
Stratford 45 61 o 149
Toronto 107 194 149 0

Add the following methods:

a.

displayFarthestPair finds and prints the pair of cities that is
farthest apart.

. displayClosestPair finds and prints the pair of distinct cities that are

closest together.

isSymmetrical verifies that the table is symmetrical; that is, it returns
true if the distance from X to Y is the same as from Y to X for each pair of
cities, and if the distance from X to X is 0.

. getDistance returns the distance between two cities, given their names.

(Hint: You’ll need to add a 1D array of Strings to store the city names.
Finding “Stratford” at index 7 indicates that 7 should be used as the index in
the row or column of the 2D array of distances. You may need to adjust the
format of your input file to include the city names.)

getTripDistance returns the total distance for a trip when given an array
of city names. The order of the names in the array corresponds to the order
the cities are visited on the trip.

10.20 Notice that less than half of the data in the distance chart shown in Table 10-1
is actually needed. The upper half of the chart isn’t needed because the array is
symmetrical. Write a program that reads data from a file such as

4

110

45

61

107 194 149

where the first line gives the number of cities and the remaining lines give the
distances between cities X and Y where the index of city X is less than the
index of city Y. Note that this data corresponds to the lower left corner of
Table 10-1.

a.

Write a constructor that reads this data but constructs a full 2D array, the
same as Problem 10.19.

. Write a constructor that reads this data into a 2D array where each row is

only long enough to store the required data.

. Add methods that perform the same calculations as a, b, d, and e in

Problem 10.19.

13§ wW31godd O1'ot |

